A note of spaces of test and generalized functions of Poisson white noise

Preprint English OPEN
Lytvynov, E.;
(2006)
  • Subject: Mathematics - Probability

The paper is devoted to construction and investigation of some riggings of the $L^2$-space of Poisson white noise. A particular attention is paid to the existence of a continuous version of a function from a test space, and to the property of an algebraic structure unde... View more
  • References (20)
    20 references, page 1 of 2

    [3] I. M. Gel'fand and N. Ya. Vilenkin, “Generalized Functions, Volume IV,” Academic Press, New York/London, 1964.

    [4] T. Hida, H.-H Kuo, J. Potthoff, and L. Streit, “White Noise: An Infinite Dimensional Calculus,” Kluwer Acad. Publ., Dordrecht/Boston/London, 1993.

    [5] Y. Ito, Generalized Poisson functionals, Prob. Th. Rel. Fields, 77 (1988), 1-28.

    [6] Y. Ito and I. Kubo, Calculus on Gaussian and Poisson white noises, Nagoya Math. J., 111 (1988), 41-84.

    [7] Yu. G. Kondratiev, P. Leukert, and L. Streit, Wick calculus in Gaussian analysis, Preprint, BiBoS University, Bielefeld, 1994.

    [8] Yu. G. Kondratiev and L. Streit, Spaces of white noise distributions: constructions, descriptions, applications I, Rep. Math. Phys., 33 (1993), 341-366.

    [9] Yu. G. Kondratiev, L. Streit, W. Westerkamp, and J. Yan, Generalized functions in infinite dimensional analysis, Preprint, BiBoS University, Bielefeld, 1995.

    [10] I. Kubo and S. Takenaka, Calculus on Gaussian white noise I, Proc. Japan Acad., 56A (1980), 376-380.

    [11] I. Kubo and S. Takenaka, Calculus on Gaussian white noise II, ibid., 56A (1980), 411-416.

    [12] I. Kubo and Y. Yokoi, A remark on the space of testing random variables in the white noise calculus, Nagoya Math. J., 115 (1989), 139-149.

  • Metrics
Share - Bookmark