An Algorithm Computing the Local $b$ Function by an Approximate Division Algorithm in $\hat{\mathcal{D}}$

Preprint English OPEN
Nakayama, Hiromasa;
(2006)
  • Subject: Mathematics - Rings and Algebras
    acm: ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION

We give an algorithm to compute the local $b$ function. In this algorithm, we use the Mora division algorithm in the ring of differential operators and an approximate division algorithm in the ring of differential operators with power series coefficient.
  • References (19)
    19 references, page 1 of 2

    [1] Oaku, T. : Gr¨obner bases and systems of linear differential equations - An intoduction to computational algebraic analysis, Sophia University lecture note series, (in Japanese), (1994)

    [2] Oaku, T. : Computatinal algebra and D-modules, Asakura, (in Japanese), (2002)

    [3] Hironaka, H., Urabe, T. : Analytic space, Asakura, (in Japanese), (1981)

    [4] Assi, A., Castro, F., Granger, M. : The standard fan of an analytic Dmodule, Journal of Pure and Applied Algebar, 164, 3-21, (2001)

    [5] Castro, F. : Th´eor´eme de division pur les op´erateurs diff´erentials et calcul des multiplicit´es, PhD thesis, Universite Paris VII, (1984)

    [6] Castro, F. : Calculs effectifs pour les id´eaux d'op´erateurs diff´erentiels, Travaux en Cours 24, 1-19, (1987)

    [7] Castro, F., Granger, M. : Explicit calculations in rings of differential operators, S´eminaires et Congr`es 8, 89-128, (2004)

    [8] Granger, M., Oaku, T. : Mimimal filtered free resolutions and division algorithms for analytic D-modules, Journal of Pure and Applied Algebra, 191, 1-2, 157-180, (2004)

    [9] Granger, M., Oaku, T., Takayama, N. : Tangent cone algorithm for homogenized differential operators, Journal of Symbolic Computation, 39, 417-431, (2005)

    [10] Greuel, G.-M., Pfister, G. : Advances and improvements in the theory of standard bases and syzygies, Archiv der Mathematik, 66, 163-176, (1996)

  • Metrics
Share - Bookmark