publication . Preprint . Article . 2005

Parametric form of QCD travelling waves

R. Peschanski;
Open Access English
  • Published: 27 May 2005
Abstract
We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.
Subjects
free text keywords: High Energy Physics - Phenomenology, High Energy Physics - Theory, Nuclear and High Energy Physics, Differential equation, Parametric equation, Scaling, Inverse, Quantum electrodynamics, Quantum chromodynamics, Saturation (chemistry), Physics, Mathematical analysis, Parametric statistics, Hierarchy

∗ Electronic address: pesch@spht.saclay.cea.fr [1] S. Munier and R. Peschanski, Phys. Rev. Lett. 91, 232001 (2003) hep-ph/0309177, Phys. Rev. D 69, 034008 (2004)

hep-ph/0310357, Phys. Rev. D 70, 077503 (2004) hep-ph/0401215. [2] A. M. Sta´sto, K. Golec-Biernat, and J. Kwiecinski, Phys. Rev. Lett. 86, 596 (2001), hep-ph/0007192. [3] I. I. Balitsky, Nucl. Phys. B 463, 99 (1996) hep-ph/9509348; Y. V. Kovchegov, Phys. Rev. D60, 034008 (1999),

hep-ph/9901281, Phys. Rev. D61, 074018 (2000), hep-ph/9905214. [4] L. N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976); E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 45,

199 (1977); I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978). [5] R. A. Fisher, Ann. Eugenics 7, 355 (1937); A. Kolmogorov, I. Petrovsky, and N. Piscounov, Moscou Univ. Bull. Math.

A1, 1 (1937). [6] M. Bramson, Memoirs of the American Mathematical Society 285 (1983). [7] U. Ebert, W. van Saarloos, Physica D 146, 1 (2000). For a review, see W. van Saarloos, Phys. Rep. 386, 29 (2003). [8] J. David Logan, “An Introduction to Nonlinear Partial Differential Equations”, John Wiley and sons eds., New York,

Raton, eds. (2000). The first two terms of the F-KPP solution (13) appear in P.L. Sachdev's book. We thank G.Soyez for

a calculation of the third term. [9] C. Marquet, G. Soyez, R. Peschanski, in preparation. [10] E. Iancu, A. H. Mueller and S. Munier, Phys. Lett. B 606, 342 (2005) hep-ph/0410018;

E. Iancu and D. N. Triantafyllopoulos, hep-ph/0411405.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue