A categorical foundation for structured reversible flowchart languages: Soundness and adequacy

Preprint English OPEN
Glück, Robert; Kaarsgaard, Robin;
(2017)
  • Related identifiers: doi: 10.23638/LMCS-14(3:16)2018
  • Subject: Mathematics - Category Theory | Computer Science - Programming Languages | D.3.1 | F.3.2
    arxiv: Computer Science::Programming Languages

Structured reversible flowchart languages is a class of imperative reversible programming languages allowing for a simple diagrammatic representation of control flow built from a limited set of control flow structures. This class includes the reversible programming lang... View more
  • References (32)
    32 references, page 1 of 4

    [1] Abramov, S. M. and R. Glu¨ck, The universal resolving algorithm: inverse computation in a functional language, in: R. Backhouse and J. N. Oliveira, editors, Mathematics of Program Construction. Proceedings, LNCS 1837 (2000), pp. 187-212.

    [2] Axelsen, H. B. and R. Glu¨ck, What do reversible programs compute?, in: M. Hofmann, editor, Foundations of Software Science and Computation Structures. Proceedings, Lecture Notes in Computer Science 6604 (2011), pp. 42-56.

    [3] Axelsen, H. B., R. Glu¨ck and T. Yokoyama, Reversible machine code and its abstract processor architecture, in: V. Diekert, M. V. Volkov and A. Voronkov, editors, Computer Science - Theory and Applications. Proceedings, Lecture Notes in Computer Science 4649 (2007), pp. 56-69.

    [4] Axelsen, H. B. and R. Kaarsgaard, Join inverse categories as models of reversible recursion, in: B. Jacobs and C. L¨oding, editors, FOSSACS 2016, Proceedings, number 9634 in LNCS (2016), pp. 73-90.

    [5] Carboni, A., S. Lack and R. F. C. Walters, Introduction to extensive and distributive categories, Journal of Pure and Applied Algebra 84 (1993), pp. 145 - 158.

    [6] Carothers, C. D., K. S. Perumalla and R. M. Fujimoto, Efficient optimistic parallel simulations using reverse computation, ACM Trans. Model. Comput. Simul. 9 (1999), pp. 224-253.

    [7] Cockett, J. R. B., Itegories & PCAs (2007), slides from talk at FMCS 2007.

    [8] Cockett, J. R. B. and S. Lack, Restriction categories I: Categories of partial maps, Theoretical Computer Science 270 (2002), pp. 223-259.

    [9] Cockett, J. R. B. and S. Lack, Restriction categories II: Partial map classification, Theoretical Computer Science 294 (2003), pp. 61-102.

    [10] Cockett, R. and S. Lack, Restriction categories III: Colimits, partial limits and extensivity, Mathematical Structures in Computer Science 17 (2007), pp. 775-817.

  • Metrics
Share - Bookmark