publication . Preprint . Article . 2011

Covariant Transform

Vladimir V. Kisil;
Open Access English
  • Published: 01 Mar 2011
Abstract
Comment: 9 pages, LaTeX2e (AMS-LaTeX); v2: minor corrections
Subjects
arXiv: Mathematics::Functional Analysis
free text keywords: Mathematics - Functional Analysis, Mathematics - Complex Variables, Mathematics - Representation Theory, 43A85, 32M99, 43A32, 46E10, 47A60, 47A67, 47C99, 81R30, Mathematical physics, Mathematics, Covariant transformation
23 references, page 1 of 2

[1] Syed Twareque Ali, Jean-Pierre Antoine, and Jean-Pierre Gazeau, Coherent states, wavelets and their generalizations, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 2000. MR2002m:81092 ↑1, 2, 3, 4, 8

[2] Ola Bratteli and Palle E. T. Jorgensen, Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale N , Integral Equations Operator Theory 28 (1997), no. 4, 382-443. E-print: arXiv:funct-an/9612003. ↑4

[3] Jens Gerlach Christensen and Gestur O´ lafsson, Examples of coorbit spaces for dual pairs, Acta Appl. Math. 107 (2009), no. 1-3, 25-48. MR2520008 ↑1, 2 [OpenAIRE]

[4] Jan Cnops and Vladimir V. Kisil, Monogenic functions and representations of nilpotent Lie groups in quantum mechanics, Math. Methods Appl. Sci. 22 (1999), no. 4, 353-373. E-print: arXiv:math/9806150. Zbl 1005.22003. MR1671449 (2000b:81044) ↑4 [OpenAIRE]

[5] M. Duflo and Calvin C. Moore, On the regular representation of a nonunimodular locally compact group, J. Functional Analysis 21 (1976), no. 2, 209-243. MR52#14145 ↑3, 8 [OpenAIRE]

[6] Feichtinger, Hans G. and Groechenig, K.H., Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), no. 2, 307-340. Zbl 691.46011. ↑1, 2 [OpenAIRE]

[7] Hartmut Fu¨hr, Abstract harmonic analysis of continuous wavelet transforms, Lecture Notes in Mathematics, vol. 1863, Springer-Verlag, Berlin, 2005. MR2130226 (2006m:43003) ↑1, 2

[8] Loukas Grafakos, Classical Fourier analysis, Second, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR2445437 ↑4 [OpenAIRE]

[9] Ondrej Hutn´ık, On Toeplitz-type operators related to wavelets, Integral Equations Operator Theory 63 (2009), no. 1, 29-46. MR2480637 ↑3

[10] Andreas Johansson, Shift-invariant signal norms for fault detection and control, Systems Control Lett. 57 (2008), no. 2, 105-111. MR2378755 (2009d:93035) ↑4

[11] Vladimir V. Kisil, Analysis in R1,1 or the principal function theory, Complex Variables Theory Appl. 40 (1999), no. 2, 93-118. E-print: arXiv:funct-an/9712003. MR1744876 (2000k:30078) ↑1, 3

[12] , Two approaches to non-commutative geometry, Complex methods for partial differential equations (Ankara, 1998), 1999, pp. 215-244. E-print: arXiv:funct-an/9703001. MR1744440 (2001a:01002) ↑6

[13] , Wavelets in Banach spaces, Acta Appl. Math. 59 (1999), no. 1, 79-109. E-print: arXiv:math/9807141, On-line. MR1740458 (2001c:43013) ↑1, 2, 4, 5

[14] , Spectrum as the support of functional calculus, Functional analysis and its applications, 2004, pp. 133-141. E-print: arXiv:math.FA/0208249. MR2098877 ↑4, 5

[15] , Wavelets beyond admissibility, Proceedings of the 10th ISAAC Congress, London 2009, 2010, pp. 6 pp. E-print: arXiv:0911.4701. ↑1

23 references, page 1 of 2
Any information missing or wrong?Report an Issue