publication . Preprint . 2017

High efficiency cyclotron trap assisted positron moderator

Gerchow, L.; Cooke, D. A.; Braccini, S.; Döbeli, M.; Kirch, K.; Köster, U.; Müller, A.; Van Der Meulen, N. P.; Vermeulen, C.; Rubbia, A.; ...
Open Access English
  • Published: 17 Mar 2017
We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. The simulation validated with this measurement suggests that using an optimised setup even higher efficiencies are achievable.
arXiv: Physics::Accelerator PhysicsAstrophysics::High Energy Astrophysical Phenomena
free text keywords: Physics - Instrumentation and Detectors, High Energy Physics - Experiment
Funded by
SNSF| Precision laser spectroscopy of positronium
  • Funder: Swiss National Science Foundation (SNSF)
  • Project Code: 200021_156756
  • Funding stream: Project funding | Project funding (Div. I-III)
Download from
42 references, page 1 of 3

World Scienti c 2003. [3] D. W. Townsend, Ann Acad Med Singapore 33, 133

(2004). [4] F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583

(2013). [5] S.W. H. Eijt et al., Nature Materials 5, 23 (2006). [6] J. A. Weber et al., Phys. Rev. Lett. 115, 206404 (2015). [7] Y. C. Jean, J. David Van Horn, Wei-Song Hung, Kuier-

Rarn Lee, Macromolecules 46, 7133 (2013). [8] D.W. Gidley, H.-G. Peng, and R.S. Vallery, Annu. Rev.

Mater. 36, 49 (2006). [9] M. Milina, S. Mitchell, P. Crivelli, D. Cooke, J. Perez-

Ramirez, Nature Comm. 4922 (2014). [10] P. Crivelli, D. Cooke, B. Barbiellini, B. L. Brown, J. I.

Matzger, Phys. Rev. B. 89, 241103(R) (2014). [11] C. M. Surko, G. F. Gribakin and S J Buckman, Journal

of Physics B: Atomic, Molecular and Optical Physics 38,

R57 (2005) [12] S.J. Brawley, S.E. Fayer, M. Shipman and G. Laricchia

Phys. Rev. Lett. 115, 223201 (2015). [13] S. G. Karshenboim, Phys. Rept. 422, 1 (2005). [14] M. Fee et al., Phys. Rev. Lett. 70, 1397 (1993). [15] A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito,

734, 338 (2014). [16] F. Fleischer et al., Phys. Rev. Lett. 96, 063401 (2006). [17] K. Michishio et al., Nature Communications 7, 11060

(2016). [18] D. B. Cassidy, T. H. Hisakado, H. W. K. Tom, and A. P. [OpenAIRE]

Mills, Jr. Phys. Rev. Lett. 108, 133402 (2012). [19] P. A. Vetter and S. J. Freedman Phys. Rev. Lett. 91,

263401 (2003). [20] Yamazaki et al, Phys. Rev. Lett. 104, 083401 (2010). [21] A. Badertscher, P. Crivelli, W. Fetscher, U. Gendotti, S.

Sillou, Phys. Rev. D 75, 032004 (2007). [22] A. Deller, A. M. Alonso, B. S. Cooper, S. D. Hogan, and

42 references, page 1 of 3
Any information missing or wrong?Report an Issue