publication . Preprint . Article . 2002

Towards chaos criterion in quantum field theory

V.I. Kuvshinov; A.V. Kuzmin;
Open Access English
  • Published: 25 May 2002
Abstract
Chaos criterion for quantum field theory is proposed. Its correspondence with classical chaos criterion in semi-classical regime is shown. It is demonstrated for real scalar field that proposed chaos criterion can be used to investigate stability of classical solutions of field equations.
Subjects
arXiv: Nonlinear Sciences::Chaotic Dynamics
free text keywords: High Energy Physics - Theory, General Physics and Astronomy, Quantum chaos, Quantum field theory, Circle criterion, Classical mechanics, Scalar field, Polynomial chaos, Separable state, Physics, Green's function, symbols.namesake, symbols, Field equation
19 references, page 1 of 2

[1] A.N. Kolmogorov, Reports AS USSR, 98 (1954), p.527 (in Russian).

[2] V.I. Arnold, Izvestiya Akad. Nauk SSSR 25 (1961) p.21 (in Russian).

[3] N.S. Krylov , Works on substantiation of statistical physics.- Izdatelstvo Akad. Nauk SSSR, Moskow-Leningrad, 1950 (in Russian).

[4] A.J. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion.- Springer-Verlag, New York, 1983.

[5] G.M. Zaslavskii, R.Z. Sagdeev, Introduction in nonlinear physics.-Moskow, Nauka, 1988 (in Russian).

[6] G.M. Zaslavskii, Stochasticity of dynamical systems.-Moskow, Nauka, 1984 (in Russian).

[7] T. Prosen, M. Robnik, J. Phys. A, 27 (1994), p.8059; B.V. Chirikov, proceed. of II Int. Workshop on Squeezed States and Uncertainty Relations, P.N. Lebedev Phys. Inst., Moskow, May 25-29 (1992), NASA Conf. Publ. 3219, p. 317.

[8] B. Li, M. Robnik, J. Phys. A, 28 (1995), p.4843.

[9] T. Kawabe , S. Ohta, Phys. Rev. 44D (1991), p.1274.

[10] T.S. Biro, B. Muller, S.G. Matinyan, hep-th/0010134, 2000.

[11] V.E. Bunakov, proceed. of the XXXII Winter School of PNPI, Feb. 22-28 (1998).

[12] G. Mandelbaum, proceed. of Int. Conf. ”Chaos and Complexity”.- Edition Frontieres (1995) p.193.

[13] E.A. De Wolf, I.M. Dremin, W. Kittel, Phys. Rep. 270 (1996), p.1.

[14] M. Toda, Phys. Lett. A48 (1974), p.335.

[15] L. Salasnich, proceed. of the VIII Int. Conf. on Symm. Meth. in Phys., Dubna (1997); nucl-th/9707035, 1997.

19 references, page 1 of 2
Any information missing or wrong?Report an Issue