publication . Preprint . 2015

The Status of Supersymmetry after the LHC Run 1

Bechtle, Philip; Plehn, Tilman; Sander, Christian;
Open Access English
  • Published: 09 Jun 2015
Abstract
Supersymmetry (SUSY) is a complete and renormalisable candidate for an extension of the Standard Model. At an energy scale not too far above the electroweak scale it would solve the hierarchy problem of the SM Higgs boson, dynamically explain electroweak symmetry breaking, and provide a dark-matter candidate. Since it doubles the Standard Model degrees of freedom, SUSY predicts a large number of additional particles, whose properties and effects on precision measurements can be explicitly predicted in a given SUSY model. In this review the motivation for SUSY is outlined, the various searches strategies for SUSY particles at the LHC are described, and the status...
Subjects
arXiv: High Energy Physics::PhenomenologyHigh Energy Physics::ExperimentHigh Energy Physics::Theory
free text keywords: High Energy Physics - Experiment, High Energy Physics - Phenomenology
Download from
115 references, page 1 of 8

1. T. Schorner-Sadenius, ed., \The Large Hadron Collider | Harvest of Run 1". Springer, Heidelberg, Germany, 2015.

2. P. W. Higgs, \Broken symmetries, massless particles and gauge elds", Phys. Lett. 12 (1964) 132{133.

3. P. W. Higgs, \Broken Symmetries and the Masses of Gauge Bosons", Phys. Rev. Lett. 13 (1964) 508{509, doi:10.1103/PhysRevLett.13.508.

4. F. Englert and R. Brout, \Broken Symmetry and the Mass of Gauge Vector Mesons", Phys. Rev. Lett. 13 (1964) 321{323, doi:10.1103/PhysRevLett.13.321. [OpenAIRE]

5. CMS Collaboration, \Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC", Phys. Lett. B 716 (2012) 30{61, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

6. ATLAS Collaboration, \Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC", Phys. Lett. B 716 (2012) 1{29, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

7. T. Plehn, \Lectures on LHC Physics", Lect. Notes Phys. 886 (2015) doi:10.1007/978-3-319-05942-6.

8. S. P. Martin, \A Supersymmetry primer", Adv. Ser. Direct. High Energy Phys. 21 (2010) 1{153, doi:10.1142/9789814307505_0001, arXiv:hep-ph/9709356.

9. D. E. Morrissey, T. Plehn, and T. M. Tait, \Physics searches at the LHC", Phys. Rept. 515 (2012) 1{113, doi:10.1016/j.physrep.2012.02.007, arXiv:0912.3259.

10. G. Jungman, M. Kamionkowski, and K. Griest, \Supersymmetric dark matter", Phys. Rept. 267 (1996) 195{373, doi:10.1016/0370-1573(95)00058-5, arXiv:hep-ph/9506380.

11. G. Bertone, D. Hooper, and J. Silk, \Particle dark matter: Evidence, candidates and constraints", Phys. Rept. 405 (2005) 279{390, doi:10.1016/j.physrep.2004.08.031, arXiv:hep-ph/0404175.

12. W. Bernreuther, \CP violation and baryogenesis", Lect. Notes Phys. 591 (2002) 237{293, arXiv:hep-ph/0205279.

13. U. Amaldi, W. de Boer, and H. Furstenau, \Comparison of grand uni ed theories with electroweak and strong coupling constants measured at LEP", Phys. Lett. B 260 (1991) 447{455, doi:10.1016/0370-2693(91)91641-8. [OpenAIRE]

14. E. Gildener, \Gauge Symmetry Hierarchies", Phys. Rev. D 14 (1976) 1667, doi:10.1103/PhysRevD.14.1667.

15. S. Weinberg, \Implications of Dynamical Symmetry Breaking", Phys. Rev. D 13 (1976) 974{996, doi:10.1103/PhysRevD.13.974.

115 references, page 1 of 8
Abstract
Supersymmetry (SUSY) is a complete and renormalisable candidate for an extension of the Standard Model. At an energy scale not too far above the electroweak scale it would solve the hierarchy problem of the SM Higgs boson, dynamically explain electroweak symmetry breaking, and provide a dark-matter candidate. Since it doubles the Standard Model degrees of freedom, SUSY predicts a large number of additional particles, whose properties and effects on precision measurements can be explicitly predicted in a given SUSY model. In this review the motivation for SUSY is outlined, the various searches strategies for SUSY particles at the LHC are described, and the status...
Subjects
arXiv: High Energy Physics::PhenomenologyHigh Energy Physics::ExperimentHigh Energy Physics::Theory
free text keywords: High Energy Physics - Experiment, High Energy Physics - Phenomenology
Download from
115 references, page 1 of 8

1. T. Schorner-Sadenius, ed., \The Large Hadron Collider | Harvest of Run 1". Springer, Heidelberg, Germany, 2015.

2. P. W. Higgs, \Broken symmetries, massless particles and gauge elds", Phys. Lett. 12 (1964) 132{133.

3. P. W. Higgs, \Broken Symmetries and the Masses of Gauge Bosons", Phys. Rev. Lett. 13 (1964) 508{509, doi:10.1103/PhysRevLett.13.508.

4. F. Englert and R. Brout, \Broken Symmetry and the Mass of Gauge Vector Mesons", Phys. Rev. Lett. 13 (1964) 321{323, doi:10.1103/PhysRevLett.13.321. [OpenAIRE]

5. CMS Collaboration, \Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC", Phys. Lett. B 716 (2012) 30{61, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

6. ATLAS Collaboration, \Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC", Phys. Lett. B 716 (2012) 1{29, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

7. T. Plehn, \Lectures on LHC Physics", Lect. Notes Phys. 886 (2015) doi:10.1007/978-3-319-05942-6.

8. S. P. Martin, \A Supersymmetry primer", Adv. Ser. Direct. High Energy Phys. 21 (2010) 1{153, doi:10.1142/9789814307505_0001, arXiv:hep-ph/9709356.

9. D. E. Morrissey, T. Plehn, and T. M. Tait, \Physics searches at the LHC", Phys. Rept. 515 (2012) 1{113, doi:10.1016/j.physrep.2012.02.007, arXiv:0912.3259.

10. G. Jungman, M. Kamionkowski, and K. Griest, \Supersymmetric dark matter", Phys. Rept. 267 (1996) 195{373, doi:10.1016/0370-1573(95)00058-5, arXiv:hep-ph/9506380.

11. G. Bertone, D. Hooper, and J. Silk, \Particle dark matter: Evidence, candidates and constraints", Phys. Rept. 405 (2005) 279{390, doi:10.1016/j.physrep.2004.08.031, arXiv:hep-ph/0404175.

12. W. Bernreuther, \CP violation and baryogenesis", Lect. Notes Phys. 591 (2002) 237{293, arXiv:hep-ph/0205279.

13. U. Amaldi, W. de Boer, and H. Furstenau, \Comparison of grand uni ed theories with electroweak and strong coupling constants measured at LEP", Phys. Lett. B 260 (1991) 447{455, doi:10.1016/0370-2693(91)91641-8. [OpenAIRE]

14. E. Gildener, \Gauge Symmetry Hierarchies", Phys. Rev. D 14 (1976) 1667, doi:10.1103/PhysRevD.14.1667.

15. S. Weinberg, \Implications of Dynamical Symmetry Breaking", Phys. Rev. D 13 (1976) 974{996, doi:10.1103/PhysRevD.13.974.

115 references, page 1 of 8
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue