publication . Preprint . 2018

A plasma solenoid driven by an Orbital Angular Momentum laser beam

Nuter, R.; Korneev, Ph.; Thiele, I.; Tikhonchuk, V.;
Open Access English
  • Published: 10 Apr 2018
Abstract
A tens of Tesla quasi-static axial magnetic field can be produced in the interaction of a short intense laser beam carrying an Orbital Angular Momentum with an underdense plasma. Three-dimensional "Particle In Cell" simulations and analytical model demonstrate that orbital angular momentum is transfered from a tightly focused radially polarized laser beam to electrons without any dissipative effect. A theoretical model describing the balistic interaction of electrons with laser shows that particles gain angular velocity during their radial and longitudinal drift in the laser field. The agreement between PIC simulations and the simplified model identifies routes ...
Persistent Identifiers
Subjects
arXiv: Physics::Accelerator Physics
free text keywords: Physics - Plasma Physics
Related Organizations
Download from
19 references, page 1 of 2

[1] V.I. Berezhiani, S.M. Mahajan, and N.L. Shatashvili. Theory of magnetic field generation by relativistically strong laser radiation. Physical Review E, 55:995, 1997.

[2] Riccardo Hertel. Theory of the inverse Faraday effect in metals. Journal of Magnetism and Magnetic Materials, 303:L1, 2006.

[3] G. Shvets, N.J. Fisch, and J.-M Rax. Magnetic field generation through angular momentum exchange between circularly polarized radiation and charged particles. Physical Review E, 65:046403, 2002. [OpenAIRE]

[4] N. Naseri, V.Yu. Bychenkov, and W. Rozmus. Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas. Physics of Plasmas, 17:083109, 2010.

[5] T.V. Liseykina, S.V. Popruzhenko, and A. Macchi. Inverse Faraday effect driven by radiation friction. New Journal of Physics, 18:072001, 2016. [OpenAIRE]

[6] Z. Lécz, A. Andreev, and A. Seryi. Plasma rotation with circularly polarized laser pulse. Laser and Particle Beams, 34:31, 2016. [OpenAIRE]

[7] Ph. Korneev, E. d'Humières, and V. Tikhonchuk. Gigagauss-scale quasistatic magnetic field generation in a snail-shaped target. Physical Review E, 91:043107, 2015.

[8] Ph. Korneev, V. Tikhonchuk, and E. d'Humières. Magnetization of laser-produced plasma in a chiral hollow target. New Journal of Physics, 19:033023, 2017.

[9] S. Ali, J.R. Davies, and J.T.Mendonca. Inverse Faraday effect with linearly polarized laser pulses. Physical Review Letters, 105:035001, 2010.

[10] Z. Lécz, I.V. Konoplev, A. Seryi, and A. Andreev. Gigagauss solenoidal magnetic field inside bubbles excited in under-dense plasma. Nature:Scientific Reports, 6:36139, 2016.

[11] Z. Najmudin, M. Tatarakis, A. Pukhov, E.L. Clark, R.J. Clarke, A.E. Dangor, J. Faure, V. Malka, D. Neely, M.I.K. Santala, and K. Krushelnick. Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma. Physical Review Letters, 87:215004, 2001. [OpenAIRE]

[12] J. Deschamps, M. Fitaire, and M. Lagoutte. Inverse Faraday effect in a plasma. Physical Review Letters, 25:1330, 1970. [OpenAIRE]

[13] Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad. Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas. Physical Review Letters, 78:1707, 1997.

[14] L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, and J.P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45:8185, 1992. [OpenAIRE]

[15] W. Wang, B. Shen, X. Zhang, L. Zhang, Y. Shi, and Z. Xu. Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser. Scientific Reports, 5:8274, 2014.

19 references, page 1 of 2
Any information missing or wrong?Report an Issue