Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps with prescribed singular fibers

Preprint English OPEN
Kalmar, Boldizsar (2006)
  • Subject: Mathematics - Algebraic Topology | 57R45 | 57R75 | Mathematics - Geometric Topology
    arxiv: Mathematics::K-Theory and Homology | Mathematics::Algebraic Geometry | Mathematics::Complex Variables | Mathematics::Geometric Topology | Mathematics::Algebraic Topology

We give a Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps, and obtain results about cobordism and bordism groups of -1 codimensional stable maps with prescribed singular fibers.
  • References (42)
    42 references, page 1 of 5

    [1] Y. Ando, Cobordism of maps without prescribed singularities, arXiv:math.GT/0412234v1.

    [2] , A homotopy principle for maps with prescribed Thom-Boardman singularities, Trans. Amer. Math. Soc. 359 (2007), 480-515.

    [3] , The homotopy principle for maps with singularities of given K -invariant class, J. Math. Soc. Japan 59 (2007), 557-582.

    [4] , Cobordisms of maps with singularities of a given class, arXiv:0707.4329v3.

    [5] T. Ekholm, A. Szu˝cs and T. Terpai, Cobordisms of fold maps and maps with a prescribed number of cusps, Kyushu J. Math. 61 (2007), 395-414.

    [6] J. M. Eliashberg, On singularities of folding type, Math. USSR-Izv. 4 (1970), 1119-1134.

    [7] M. Gromov, Stable mappings of foliations into manifolds, Math. USSR-Izv. 3 (1969), 671-694.

    [8] K. Ikegami, Cobordism group of Morse functions on manifolds, Hiroshima Math. J. 34 (2004), 211-230.

    [9] K. Ikegami and O. Saeki, Cobordism group of Morse functions on surfaces, J. Math. Soc. Japan 55 (2003), 1081-1094.

    [10] K. J¨anich, Symmetry Properties of Singularities of C∞ -Functions, Math. Ann. 238, 147-156 (1978)

  • Metrics
    No metrics available
Share - Bookmark