A Learning Framework for High Precision Industrial Assembly

Preprint English OPEN
Fan, Yongxiang; Luo, Jieliang; Tomizuka, Masayoshi;
(2018)
  • Subject: Computer Science - Artificial Intelligence | Computer Science - Robotics

Automatic assembly has broad applications in industries. Traditional assembly tasks utilize predefined trajectories or tuned force control parameters, which make the automatic assembly time-consuming, difficult to generalize, and not robust to uncertainties. In this pap... View more
  • References (16)
    16 references, page 1 of 2

    [1] Experimental Videos for A Learning Framework for High Precision Assembly Task, http://me.berkeley.edu/%7Eyongxiangfan/ICRA2019/guided ddpg.html.

    [2] J. W. Kalat, Introduction to psychology. Nelson Education, 2016.

    [3] T. Tang, H.-C. Lin, Y. Zhao, Y. Fan, W. Chen, and M. Tomizuka, “Teach industrial robots peg-hole-insertion by human demonstration,” in Advanced Intelligent Mechatronics (AIM), 2016 IEEE International Conference on. IEEE, 2016, pp. 488-494.

    [4] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229-256, 1992.

    [5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

    [6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

    [7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

    [8] M. Vecer´ık, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Roth o¨rl, T. Lampe, and M. A. Riedmiller, “Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards,” CoRR, abs/1707.08817, 2017.

    [9] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana, “Deep reinforcement learning for high precision assembly tasks,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE, 2017, pp. 819-825.

    [10] S. Levine and V. Koltun, “Guided policy search,” in International Conference on Machine Learning, 2013, pp. 1-9.

  • Related Research Results (1)
  • Metrics
Share - Bookmark