19 references, page 1 of 2 [1] B. K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 158-179.

[2] D. E. Amos, Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order, ACM Trans. Math. Soft., 12 (1986), pp. 265-273.

[3] R. Bisseling and R. Kosloff, The fast Hankel transform as a tool in the solution of the time dependent Schrdinger equation, J. Comput. Phys., 59 (1985), pp. 136-151.

[4] S. M. Candel, Dual algorithms for fast calculation of the Fourier-Bessel transform, IEEE Trans. Acoust. Sp. Sig. Proc., 29 (1981), pp. 963-972.

[5] M. J. Cree and P. J. Bones, Algorithms to numerically evaluate the Hankel transform, Computers and Mathematics with Applications, 26 (1993), pp. 1-12.

[6] K. Gopalan and C. S. Chen, Fast computation of zero order Hankel transform, J. Franklin Institute, 316 (1983), pp. 317-326.

[7] M. Guizar-Sicairos and J. C. GutiĀ“errez-Vega, Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields, J. Opt. Soc. Amer. A, 21 (2004), pp. 53-58.

[8] N. Hale and A. Townsend, A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula, SIAM J. Sci. Comput., 36 (2014), A148-A167.

[9] N. Hale and A. Townsend, An algorithm for the convolution of Legendre series, SIAM J. Sci. Comput., 36 (2014), A1207-A1220.

[10] N. Hale and A. Townsend, A fast FFT-based discrete Legendre transform, submitted.