publication . Article . Preprint . 2014

Pseudogap phenomena in ultracold atomic Fermi gases

Qijin Chen;
Open Access
  • Published: 28 Sep 2014 Journal: Frontiers of Physics, volume 9, pages 539-570 (issn: 2095-0462, eissn: 2095-0470, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to the mysteries of high $T_c$ superconductivity. One obstacle to the ultimate understanding of high $T_c$ superconductivity, from day one of its discovery, is the anomalous ye...
arXiv: Condensed Matter::Quantum GasesCondensed Matter::SuperconductivityCondensed Matter::Strongly Correlated Electrons
free text keywords: Physics and Astronomy (miscellaneous), Condensed Matter - Quantum Gases, Condensed Matter - Strongly Correlated Electrons, Condensed Matter - Superconductivity
194 references, page 1 of 13

[1] Q. J. Chen, J. Stajic, S. N. Tan, and K. Levin, BCS-BEC crossover: From high temperature superconductors to ultracold superfluids, Phys. Rep., 2005, 412: 1.

[2] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys., 2008, 80: 885.

[3] J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 1998, 2: 231, see also e-print arXiv:hep-th/9711200v3.

[4] E. Witten, Anti de sitter space and holography, Adv. Theor. Math. Phys., 1998, 2: 253.

[5] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, Large N field theories, string theory and gravity, Phys. Rep., 2000, 323: 183.

[6] M. Cubrovic´, J. Zaanen, and K. Schalm, String theory, quantum phase transitions, and the emergent fermi liquid, Science, 2009, 325: 439. [OpenAIRE]

[7] T. Timusk and B. Statt, The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys., 1999, 62: 61. [OpenAIRE]

[8] J. R. Schrieffer, Theory of Superconductivity, 3rd ed. (Perseus Books, Reading, MA, 1983).

[9] S. N. Bose, Plancks gesetz und lichtquantenhypothese, Z. Phys., 1924, 26: 178.

[10] A. Einstein, Quantentheorie des einatomigen idealen gases, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1925, 1: 3.

[11] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford, New York, 2003).

[12] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002).

[13] D. M. Eagles, Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors, Phys. Rev., 1969, 186: 456. [OpenAIRE]

[14] A. J. Leggett, Diatomic molecules and Cooper pairs, in Modern Trends in the Theory of Condensed Matter (SpringerVerlag, Berlin, 1980) pp. 13-27.

[15] P. Nozie`res and S. Schmitt-Rink, Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity, J. Low Temp. Phys., 1985, 59: 195. [OpenAIRE]

194 references, page 1 of 13
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue