## SIR dynamics in structured populations with heterogeneous connectivity

*Volz, Erik*;

- Subject: Quantitative Biology - Other Quantitative Biology | Physics - Physics and Society | Condensed Matter - Other Condensed Matter | Condensed Matter - Disordered Systems and Neural Networksarxiv: Quantitative Biology::Populations and Evolution

- References (29)
1. Altmann, M.: Susceptible-infected-removed epidemic models with dynamic partnerships. J. Math Biol. 33, 661-75 (1995)

2. Andersson, H.: Limit theorems for a random graph epidemic model. Ann. Appl. Probab. 8, 1331-1349, (1998)

3. Anderson, R. M., May,R. M.: Infectious Diseases of Humans (Oxford University Press, Oxford, 1991)

4. Athreya, K. B., Ney, P.: Branching Processes (Springer, New York, 1972)

5. Barthelemy,M., Barrat,A., Pastor-Satorras,R., Vespignani,A.: Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J. of Theor. Biol., 235, 275-288, 2005

6. Becker, N.: Estimation for discrete time branching processes with applications to epidemics. Biometrics, 33, 515-522 (1977)

7. Boguna,M., Pastor-Satorras,R., Vespignani,A. : Epidemic spreading in complex networks with degree correlations. Contribution to the Proceedings of the XVIII Sitges Conference Statistical Mechanics of Complex Networks, eds. J.M. Rubi et. al. (Springer Verlag, Berlin, 2003)

8. Dezso, Z., Barabasi, A.L. : Halting viruses in scale-free networks. Phys. Rev. E, 65, 055103(R), (2002)

9. Diekmann, O., Heesterbeek, J.A.P.: Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation. (John Wiley & Sons, Ltd., Chichester, 2000)

10. Eames, T.D., Keeling, M.J.: Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. PNAS, 99, 13330-13335 (2002)

- Metrics No metrics available

- Download from

- Cite this publication