Optimal Attitude Estimation and Filtering Without Using Local Coordinates Part I: Uncontrolled and Deterministic Attitude Dynamics

Preprint English OPEN
Sanyal, Amit K.;
  • Subject: 93E11 | Mathematics - Optimization and Control | 93E10 | 49Q99
    arxiv: Computer Science::Computers and Society | Physics::Physics Education

There are several attitude estimation algorithms in existence, all of which use local coordinate representations for the group of rigid body orientations. All local coordinate representations of the group of orientations have associated problems. While minimal coordinat... View more
  • References (21)
    21 references, page 1 of 3

    [1] Bar-Itzhack, I. Y., and Oshman, Y. (1985). Attitude determination from vector observations: quaternion estimation. IEEE Transactions on Aerospace and Electronic Systems, 21(1), 128-136.

    [2] Barshan, B. and Durrant-Whyte, H. F. (1995). Inertial navigation systems for mobile robots. IEEE Transactions on Robotics and Automation, 11(3), 328-342.

    [3] Bloch, A. M., Baillieul, J., Crouch, P. E., and Marsden, J. E. (2003). Nonholonomic Mechanics and Control, Vol. 24 of Series in Interdisciplinary Applied Mathematics, Springer Verlag, New York.

    [4] Bloch, A. M., Crouch, P. E., and Sanyal, A. K. (2005). A variational problem on stiefel manifolds, preprint available at http://math.la.asu.edu/ sanyal/research/research.html.

    [5] Crassidis, J. L., and eJunkins, J. L. (2004). Optimal Estimation of Dynamic Systems, CRC Press, Boca Raton, FL.

    [6] Crassidis, J. L., and Markley, F. L. (1997). A minimum model error approach for attitude estimation. Journal of Guidance, Control and Dynamics, 20(6), 1241-1247.

    [7] Crassidis, J. L., and Markley, F. L. (2003). Unscented filtering for spacecraft attitude estimation. AIAA Journal of Guidance, Control, and Dynamics, 26(4), 536-542.

    [8] Goldstein, H. (1980). Classical Mechanics, Second edition, AddisonWesley, Boston, MA.

    [9] Greenwood, D. T. (1987). Classical Dynamics, Second edition, Prentice Hall, Englewood Cliffs, NJ.

    [10] Hairer, E., Lubich, C., and Wanner, G. (2002). Geometric Numerical Integration, Springer-Verlag, Berlin.

  • Metrics
Share - Bookmark