publication . Preprint . Article . 2018

Dark Matter in Quantum Gravity

Boris Latosh; Xavier Calmet; Xavier Calmet;
Open Access English
  • Published: 25 Jun 2018
  • Country: United Kingdom
Abstract
Abstract We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.
Subjects
arXiv: Astrophysics::Cosmology and Extragalactic Astrophysics
free text keywords: High Energy Physics - Theory, General Relativity and Quantum Cosmology, High Energy Physics - Phenomenology, Physics and Astronomy (miscellaneous), Engineering (miscellaneous), QC, Astrophysics, QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Regular Article - Theoretical Physics, Gravitational wave, Massless particle, Standard Model, Gravitational field, Quantum gravity, Dark matter, Quantum electrodynamics, Physics, Spin-½
24 references, page 1 of 2

1. J.F. Donoghue, Phys. Rev. D 50, 3874 (1994). https://doi.org/10. 1103/PhysRevD.50.3874. arXiv:gr-qc/9405057

2. J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994). https://doi.org/ 10.1103/PhysRevLett.72.2996. arXiv:gr-qc/9310024

3. N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, Phys. Rev. D 67, 084033 (2003). https://doi.org/10.1103/PhysRevD.71.069903. arXiv:hep-th/0211072 (Erratum: [Phys. Rev. D 71, 069903 (2005)])

4. X. Calmet, Int. J. Mod. Phys. D 22, 1342014 (2013). https://doi. org/10.1142/S0218271813420145. arXiv:1308.6155 [gr-qc]

5. J.F. Donoghue, B.K. El-Menoufi, Phys. Rev. D 89(10), 104062 (2014). https://doi.org/10.1103/PhysRevD.89.104062. arXiv:1402.3252 [gr-qc]

6. X. Calmet, D. Croon, C. Fritz, Eur. Phys. J. C 75(12), 605 (2015). https://doi.org/10.1140/epjc/s10052-015-3838-2. arXiv:1505.04517 [hep-th]

7. S.O. Alexeyev, X. Calmet, B.N. Latosh, Phys. Lett. B 776, 111 (2018). https://doi.org/10.1016/j.physletb.2017.11.028. arXiv:1711.06085 [hep-th]

8. X. Calmet, S.D.H. Hsu, D. Reeb, Phys. Rev. D 77, 125015 (2008). https://doi.org/10.1103/PhysRevD.77.125015. arXiv:0803.1836 [hep-th]

9. X. Calmet, B.K. El-Menoufi, Eur. Phys. J. C 77(4), 243 (2017). https://doi.org/10.1140/epjc/s10052-017-4802-0. arXiv:1704.00261 [hep-th]

10. X. Calmet, I. Kuntz, S. Mohapatra, Eur. Phys. J. C 76(8), 425 (2016). https://doi.org/10.1140/epjc/s10052-016-4265-8. arXiv:1607.02773 [hep-th]

11. X. Calmet, S. Capozziello, D. Pryer, Eur. Phys. J. C 77(9), 589 (2017). https://doi.org/10.1140/epjc/s10052-017-5172-3. arXiv:1708.08253 [hep-th]

12. X. Calmet, Mod. Phys. Lett. A 29(38), 1450204 (2014). https:// doi.org/10.1142/S0217732314502046. arXiv:1410.2807 [hep-th]

13. X. Calmet, R. Casadio, Eur. Phys. J. C 75(9), 445 (2015). https:// doi.org/10.1140/epjc/s10052-015-3668-2. arXiv:1509.02055 [hep-th]

14. X. Calmet, R. Casadio, A.Y. Kamenshchik, O.V. Teryaev, Phys. Lett. B 774, 332 (2017). https://doi.org/10.1016/j.physletb.2017. 09.080. arXiv:1708.01485 [hep-th]

15. X. Calmet, B. Latosh, Eur. Phys. J. C 78, 205 (2018). arXiv:1801.04698 [hep-th]

24 references, page 1 of 2
Any information missing or wrong?Report an Issue