Crossed products of C(X)-algebras by endomorphisms and C(X)-categories

Preprint English OPEN
Vasselli, Ezio;
(2001)
  • Subject: Mathematics - Operator Algebras | 46L05
    arxiv: Mathematics::Category Theory | Mathematics::Operator Algebras

We construct the crossed product of a C(X)-algebra by an endomorphism, in such a way that it becomes induced by a Hilbert C(X)-bimodule. Furthermore we introduce the notion of C(X)-category, and discuss relationships with crossed products and duality for compact groups.
  • References (16)
    16 references, page 1 of 2

    [1] H. Baumg¨artel, F. Lledo': Superselection Structures for C*- algebras with Nontrivial Center, Reviews in Mathematical Physics 9, 785-819, (1997).

    [2] J. Cuntz: The internal Structure of Simple C*-Algebras , Pro. Sympos. Pure Math., 38, 85-115, (1982).

    [3] S. Doplicher, C. Pinzari, R. Zuccante: The C*-algebra of a Hilbert bimodule, Bollettino UMI, Serie VIII, 1 B, 263-282 , (1998)

    [4] S. Doplicher, J. E. Roberts: Duals of Compact Lie Groups Realized in the Cuntz Algebras and Their Actions on C*-Algebras, Journal of Functional Analysis 74, 96-120, (1987).

    [5] S. Doplicher, J. E. Roberts: Compact Group Actions on C*- Algebras, Journal of Operator Theory 91, 227-284, (1988).

    [6] S. Doplicher, J. E. Roberts: A New Duality Theory for Compact Groups, Inventiones Mathematicae 98, 157-218, (1989).

    [7] S. Doplicher, J. E. Roberts: Endomorphisms of C*-algebras, Cross Products and Duality for Compact Groups, Annals of Mathematics 130, 75-119, (1989).

    [8] G.G. Kasparov: Equivariant KK-Theory and the Novikov Conjecture, Invent. Math. 91, 147-201, (1988).

    [9] N.P. Landsman: Quantization as a Functor, math-ph/0107023, 2001.

    [10] R. Longo, J.E. Roberts: A Theory of Dimension, K-Theory 11 (1997), 103-159.

  • Metrics
Share - Bookmark