The Large Vector Multiplet Action

Preprint English OPEN
Ryb, Itai (2007)
  • Subject: High Energy Physics - Theory
    arxiv: High Energy Physics::Theory | High Energy Physics::Phenomenology

We discuss possible actions for the d=2, N=(2,2) large vector multiplet that gauges isometries of generalized Kahler geometries. We explore two scenarios that allow us to write kinetic and superpotential terms for the scalar field-strengths, and write kinetic terms for the spinor invariants that can introduce topological terms for the connections.
  • References (12)
    12 references, page 1 of 2

    [1] U. Lindstr¨om, M. Roˇcek, I. Ryb, R. von Unge and M. Zabzine, “New N = (2, 2) vector multiplets,” arXiv:0705.3201 [hep-th].

    [2] U. Lindstr¨om, M. Roˇcek, I. Ryb, R. von Unge and M. Zabzine, “T-duality and Generalized Kahler Geometry,” arXiv:0707.1696 [hep-th].

    [3] M. Gualtieri, “Generalized complex geometry,” Oxford University DPhil thesis, [arXiv:math.DG/0401221].

    [4] S. J. Gates, C. M. Hull and M. Roˇcek, “Twisted Multiplets And New Supersymmetric Nonlinear Sigma Models,” Nucl. Phys. B248 (1984) 157.

    [5] T. Buscher, U. Lindstr¨om and M. Roˇcek, “New Supersymmetric σ-models with Wess-Zumino terms,” Phys. Lett. B 202, 94 (1988).

    [6] P. S. Howe and G. Sierra, “Two-Dimensional Supersymmetric Nonlinear Sigma Models With Torsion,” Phys. Lett. B148, 451 (1984). C. M. Hull, A. Karlhede, U. Lindstr¨om and M. Roˇcek, “Nonlinear Sigma Models And Their Gauging In And Out Of Superspace,” Nucl. Phys. B 266, 1 (1986). C. M. Hull and B. J. Spence, “The gauged nonlinear sigma-model with WessZumino term,” Phys. Lett. B 232 (1989) 204; C. M. Hull and B. J. Spence, “The Geometry of the gauged sigma model with Wess-Zumino term,” Nucl. Phys. B 353, 379 (1991). M. Roˇcek, K. Schoutens and A. Sevrin, “Off-Shell WZW Models In Extended Superspace,” Phys. Lett. B 265, 303 (1991). I. T. Ivanov, B. B. Kim and M. Roˇcek, “Complex structures, duality and WZW models in extended superspace,” Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063]. S. Lyakhovich and M. Zabzine, “Poisson geometry of sigma models with extended supersymmetry,” Phys. Lett. B548 (2002) 243 [arXiv:hep-th/0210043]. N. Hitchin, “Generalized Calabi-Yau manifolds,” Q. J. Math. 54 (2003), no. 3, 281 308, [arXiv:math.DG/0209099]. A. Kapustin and Y. Li, “Topological sigma-models with H-flux and twisted generalized complex manifolds,” arXiv:hep-th/0407249. R. Zucchini, “A sigma model field theoretic realization of Hitchin's generalized

    [12] N. Berkovits and C. Vafa, “N=4 topological strings,” Nucl. Phys. B 433, 123 (1995) [arXiv:hep-th/9407190].

    [13] U. Lindstr¨om, M. Roˇcek, I. Ryb, R. von Unge and M. Zabzine, to appear.

    [14] K. Hori and C. Vafa, “Mirror symmetry,” arXiv:hep-th/0002222.

    [15] A. Adams, M. Ernebjerg and J. M. Lapan, “Linear models for flux vacua,” arXiv:hep-th/0611084.

  • Metrics
    No metrics available
Share - Bookmark