publication . Preprint . Article . 2013

General Large Deviations and Functional Iterated Logarithm Law for Multivalued Stochastic Differential Equations

Jiagang Ren; Jing Wu; Hua Zhang;
Open Access English
  • Published: 05 Dec 2013
Abstract
Comment: arXiv admin note: text overlap with arXiv:0812.0834 by other authors
Subjects
arXiv: Mathematics::ProbabilityMathematics::General Topology
free text keywords: Mathematics - Probability, Statistics, Probability and Uncertainty, Statistics and Probability, General Mathematics, Large deviations theory, Stochastic differential equation, Logarithm, Iterated logarithm, Law, Mathematics, Rate function, Law of the iterated logarithm, Discrete mathematics, Mathematical analysis
Related Organizations
23 references, page 1 of 2

[1] Anderson, R.F. and Orey, S.: Small random perturbation of dynamical systems with reflecting boundary. Nagoya Math. J. 60 (1976) 189-216. [OpenAIRE]

[2] Baldi, P.: Large deviations and functional iterated logarithm law for diffusion processes. Probab. Theory Relat. Fields 71 (1986) 435-453.

[3] Baldi, P. and Sanz, M.: Une remarque sur la th´eorie des grandes d´eviations. In Az´ema, J., Meyer, P.A. and Yor, M. (eds). S´eminaire de Probabilit´es XXV, Lecture Notes in Math., 1485, 345-348, Springer-Verlag, Berlin, 1991.

[4] Baldi, P. and Chaleyat-Maurel, M.: An extension of Ventsel-Freidlin estimate, Stochastic analysis and related topic (Silivri, 1986), 305-327, Lecture Notes in Math., 1316, Springer, Berlin, 1988.

[5] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces, Noord-Hoff Internet Publishing, Leyden, The Netherland, 1976. [OpenAIRE]

[6] Barbu, V. and Da Prato, G.: The generator of the transition semigroup corresponding to a stochastic variational inequality. Comm. Part. Diff. Equ. 33 (2008) 1318-1338. [OpenAIRE]

[7] Budhiraja, A. and Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Statist. 20, no.1, Acta Univ. Wratislav. No. 2246 (2000), 39-61.

[8] Caramellino, L.: Strassen's law of the iterated logarithm for diffusion processes for small time. Stoch. Proc. Appl. 74 (1998) 1-19. [OpenAIRE]

[9] C´epa, E.: E´quations diff´erentielles stochastiques multivoques. S´eminaire de probabilit´es XXIX, Lecture Notes in Math., 1613, 86-107, Springer, Berlin, 1995.

[10] C´epa, E.: Probleme de Skorohod multivoque. Ann. of Prob. 26 (2) (1998) 500-532.

[11] C´epa, E. and Jacquot, S.: Ergodicit´e d'in´egalit´es variationnelles stochastiques. Stoch. Stoch. Reports. 63 (1997) 41-64.

[12] Deuschel, J.D. and Stroock, D.W.: Large Deviations. Academic Press, Boston, New York, 1988.

[13] Dupuis, P. and Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York, 1997.

[14] Hiriart-Urruty, J.-B. and Lemar´echal, C.: Fundamentals of Convex Analysis, Grund. Text Ed., Springer, Berlin-Heidelberg. 2001. [OpenAIRE]

[15] Ikeda, N. and Watanabe S.: Stochastic Differential Equations and Diffusion Processes. 2nd ed., Kodansha, Tokyo/North-Holland, Amsterdam, 1989.

23 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue