39 references, page 1 of 4 [1] C. Aguilar Melchor and P. Gaborit, “On the classification of extremal [36, 18, 8] binary self-dual codes,” IEEE Transactions on Information Theory, vol. 54, no 10, pp. 4743- 4750, 2008.

[2] C. Aguilar-Melchor, P. Gaborit, J.-L. Kim, L. Sok, and P. Sol´e, Classification of extremal and s-extremal binary self-dual codes of length 38, to appear in IEEE Trans. Inform. Theory.

[3] E. Bannai, S.T. Dougherty, M. Harada, M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory vol. 45 (1999), 1194-1205.

[4] R.A. Brualdi, V. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory vol. 37 (1991), 1222-1225.

[5] A.R. Calderbank, N.J.A. Sloane, The ternary Golay code, the integers mod 9, and the Coxeter-Todd lattice, IEEE Inform. Theory vol. 42 no.2 (1996), 636.

[6] J. Cannon, C. Playoust, “An Introduction to Magma,” University of Sydney, Sydney, Australia, 1994.

[7] J.H. Conway, N.J.A. Sloane, “Sphere Packing, Lattices and Groups,” 3rd Ed., SpringerVerlag, New York, 1999.

[8] S.T. Dougherty, Shadow codes and weight enumerators, IEEE Trans. Inform. Theory vol. 41 no.3 (1995), 762-768.

[9] S.T. Dougherty, Y. Park, Codes over the p-adic integer, Des. Codes Cryptogr. vol. 39 no 1 (2006), 65-80.

[10] S.T. Dougherty, J.-L. Kim, H. Liu, Constructions of self-dual codes over chain rings, preprint, 2008.