publication . Preprint . Article . 2000

On the growth of the number of hyperbolic gravitational instantons with respect to volume

John G Ratcliffe; Steven T Tschantz;
Open Access English
  • Published: 21 Jul 2000
Comment: 9 pages and 2 tables
arXiv: Mathematics::Geometric TopologyHigh Energy Physics::Theory
free text keywords: General Relativity and Quantum Cosmology, Physics and Astronomy (miscellaneous), Hyperbolic equilibrium point, Physics, Hyperbolic space, Hyperbolic coordinates, Hyperbolic group, Classical mechanics, Hyperbolic angle, Stable manifold, Relatively hyperbolic group, Hyperbolic manifold

1. Carlip, S., Entropy versus action in the (2+1)-dimensional Hartle-Hawking wave function, Physical Rev. D, 46 (1992), 4387-4395. [OpenAIRE]

2. Carlip, S., Real tunnelling solutions and the Hartle-Hawking wavefunction, Class. Quantum Grav., 10 (1993), 1057-1064. [OpenAIRE]

3. Carlip, S., Dominant topologies in Euclidean quantum gravity, Class. Quantum Grav., 15 (1998), 2629-2638. [OpenAIRE]

4. Gibbons, G. W., Tunnelling with a negative cosmological constant, Nucl. Phys. B, 472 (1996), 683-708.

5. Gibbons, G. W., Real tunnelling geometries, Class. Quantum Grav., 15 (1998) 2605-2612.

6. Gibbons, G. W. and Hartle, J. B., Real tunneling geometries and the largescale topology of the universe, Physical Rev. D, 42 (1990), 2458-2468. [OpenAIRE]

7. Hartle, J. B. and Hawking, S. W., Wave function of the universe, Physical Rev. D, 28 (1983), 2960-2975. [OpenAIRE]

8. Ratcliffe, J. G., Foundations of Hyperbolic Manifolds, Springer-Verlag, New York, 1994.

9. Ratcliffe, J. G. and Tschantz, S. T., Gravitational instantons of constant curvature, Class. Quantum Grav., 15 (1998) 2613-2627. [OpenAIRE]

10. Ratcliffe, J. G. and Tschantz, S. T., On the Davis hyperbolic 4-manifold, Topology Appl. (2000), to appear.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue