Extreme-Value Distributions and the Freezing Transition of Structural Glasses

Preprint English OPEN
Castellana, Michele;
(2014)
  • Related identifiers: doi: 10.1103/PhysRevLett.112.215701
  • Subject: Condensed Matter - Statistical Mechanics | Condensed Matter - Disordered Systems and Neural Networks
    arxiv: Condensed Matter::Disordered Systems and Neural Networks | Computer Science::Systems and Control

We consider two mean-field models of structural glasses, the random energy model (REM) and the $p$-spin model (PSM), and we show that the finite-size fluctuations of the freezing temperature are described by extreme-value statistics (EVS) distributions, establishing an ... View more
  • References (26)
    26 references, page 1 of 3

    ∗ Electronic address: michelec@princeton.edu [1] E. J. Gumbel, Statistics of Extremes (Columbia Univer-

    sity Press, 1958). [2] P. Embrechts, C. Klüppelberg, and M. T., Modelling

    extremal events: for insurance and finance, vol. 33

    (Springer, New York, 1997). [3] L. OMalley, G. Korniss, and T. Caraco, B. Math. Biol.

    71, 1160 (2009). [4] J.-P. Bouchaud and M. Mézard, J. Phys. A - Math. Gen.

    30, 7997 (1997). [5] P. Collet, Ergod. Theor. Dyn. Syst. 21, 401 (2001). [6] P. Le Doussal and C. Monthus, Physica A 317, 140

    (2003). [7] M. Castellana and E. Zarinelli, Phys. Rev. B 84, 144417

    (2011). [8] M. Castellana, A. Decelle, and E. Zarinelli, Phys. Rev.

    Lett. 107, 275701 (2011). [9] G. Tarjus and D. Kivelson (2001), arXiv:cond-

    mat/0003368. [10] P. W. Anderson, Science 267, 1615 (1995). [11] G. Biroli and J. P. Bouchaud (2009), arXiv:0912.2542. [12] B. Derrida, Phys. Rev. Lett. 45, 79 (1980). [13] D. J. Gross and M. Mézard, Nucl. Phys. B 240, 431

  • Related Organizations (5)
  • Metrics
Share - Bookmark