Share  Bookmark

 Download from


[9] P. Phien, Some quantitative results on Lipschitz inverse and implicit functions theorems, EastWest J. Math. Vol. 13, No 1 (2011), 722.
[10] A. Rohde, On the εEntropy of Nearly Critical Values, Journal of Approximation Theory, 76 (1994), 166194.
[11] A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48, (1942), 883890.
[12] Y. Yomdin, Some quantitative results in singularity theory, Anales Polonici Mathematici, 37 (2005), 277299.
[13] Y. Yomdin, The Geometry of Critical and NearCritical Values of Differentiable Mappings, Math. Ann. 264, (1983), 495515.
[14] Y. Yomdin, Metric properties of semialgebraic sets and mappings and their applications in smooth analysis, (Proceedings of the Second International Conference on Algebraic Geometry, La Rabida, Spain, 1984, J.M. Aroca, T. SahcezGeralda, J.L. Vicente, eds.), Travaux en Cours, Hermann, Paris (1987), 165183.
[15] Y. Yomdin and G. Comte, Tame geometry with application in smooth analysis, LNM vol. 1834, 2004.
Received: September, 2011