Helicalised fractals

Preprint English OPEN
Saw, Vee-Liem; Chew, Lock Yue;
(2013)
  • Related identifiers: doi: 10.1016/j.chaos.2015.02.012
  • Subject: General Relativity and Quantum Cosmology | Nonlinear Sciences - Adaptation and Self-Organizing Systems

We formulate the helicaliser, which replaces a given smooth curve by another curve that winds around it. In our analysis, we relate this formulation to the geometrical properties of the self-similar circular fractal (the discrete version of the curved helical fractal). ... View more
  • References (8)

    [1] N. Fletcher, T. Tarnopolskaya, F. de Hoog, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 457(2005), 33 (2001). doi: 10.1098/rspa.2000.0654. URL http://rspa.royalsocietypublishing.org/content/457/ 2005/33.abstract

    [2] N.H. Fletcher, American Journal of Physics 72(5), 701 (2004). doi:10.1119/1.1652038. URL http://link.aip.org/link/?AJP/72/701/1

    [3] C.D. Toledo-Suarez, Chaos, Solitons & Fractals 39(1), 342 (2009). doi: 10.1016/j.chaos.2007.01.095. URL http://www.sciencedirect.com/science/article/ pii/S0960077907002068

    [4] M. Karliner, I. Klebanov, L. Susskind, International Journal of Modern Physics A 03(08), 1981 (1988). doi:10.1142/S0217751X88000837. URL http://www.worldscientific.com/doi/abs/ 10.1142/S0217751X88000837

    [5] V.L. Saw, L.Y. Chew, Gen. Relativ. and Gravit. 44, 2989 (2012). URL http://dx.doi.org/ 10.1007/s10714-012-1435-3

    [6] V.L. Saw, L.Y. Chew, \Curved traversable wormholes in (3+1)-dimensional spacetime", arXiv:1306.3307 [gr-qc] URL http://arxiv.org/abs/arXiv:1306.3307

    [7] A.N. Pressley, Elementary di erential geometry. New York (Springer, 2008)

    [8] M.S. Morris, K.S. Thorne, Am. J. Phys. 56(5), 395 (1988). doi:10.1119/1.15620. URL http: //link.aip.org/link/?AJP/56/395/1

  • Metrics
Share - Bookmark