publication . Preprint . 2016

Robust Kernel (Cross-) Covariance Operators in Reproducing Kernel Hilbert Space toward Kernel Methods

Alam, Md. Ashad; Fukumizu, Kenji; Wang, Yu-Ping;
Open Access English
  • Published: 17 Feb 2016
Abstract
To the best of our knowledge, there are no general well-founded robust methods for statistical unsupervised learning. Most of the unsupervised methods explicitly or implicitly depend on the kernel covariance operator (kernel CO) or kernel cross-covariance operator (kernel CCO). They are sensitive to contaminated data, even when using bounded positive definite kernels. First, we propose robust kernel covariance operator (robust kernel CO) and robust kernel crosscovariance operator (robust kernel CCO) based on a generalized loss function instead of the quadratic loss function. Second, we propose influence function of classical kernel canonical correlation analysis...
Subjects
ACM Computing Classification System: ComputingMethodologies_PATTERNRECOGNITION
free text keywords: Statistics - Machine Learning
Download from
42 references, page 1 of 3

J.G. Adrover and S. M. donato. A robust predictive approach for canonical correlation analysis. Journal of Multivariate Analysis., 133:356-376, 2015.

S. Akaho. A kernel method for canonical correlation analysis. International meeting of psychometric Society., 35:321-377, 2001.

M. A. Alam and K. Fukumizu. Hyperparameter selection in kernel principal component analysis. Journal of Computer Science, 10(7):1139-1150, 2014. [OpenAIRE]

M. A. Alam and K. Fukumizu. Higher-order regularized kernel canonical correlation analysis. International Journal of Pattern Recognition and Artificial Intelligence, 29(4):1551005(1-24), 2015.

M. A. Alam, M. Nasser, and K. Fukumizu. A comparative study of kernel and robust canonical correlation analysis. Journal of Multimedia., 5:3-11, 2010.

C. Alzate and J. A. K. Suykens. A regularized kernel CCA contrast function for ICA. Neural Networks, 21:170-181, 2008. [OpenAIRE]

T. W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley& Sons, third edition, 2003.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68:337-404, 1950. [OpenAIRE]

F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine Learning Research, 3:1-48, 2002.

K. Bache and M. Lichman. UCI machine learning repository, 2013. http://archive.ics.uci.edu/ml.

A. Christmann and I. Steinwart. On robustness properties of convex risk minimization methods for pattern recognition. Journal of Machine Learning Research, 5:1007-1034, 2004. [OpenAIRE]

A. Christmann and I. Steinwart. Consistency and robustness of kernel-based regression in convex risk minimization. Bernoulli, 13(3):799-819, 2007. [OpenAIRE]

M. Debruyne, M. Hubert, and J.V. Horebeek. Model selection in kernel based regression using the influence function. Journal of Machine Learning Research, 9:2377-2400, 2008. [OpenAIRE]

M. Debruyne, M. Hubert, and J.V. Horebeek. Detecting influential observations in kernel pca. Computational Statistics and Data Analysis, 54:3007-3019, 2010. [OpenAIRE]

42 references, page 1 of 3
Any information missing or wrong?Report an Issue