Robust Kernel (Cross-) Covariance Operators in Reproducing Kernel Hilbert Space toward Kernel Methods

Preprint English OPEN
Alam, Md. Ashad; Fukumizu, Kenji; Wang, Yu-Ping;
  • Subject: Statistics - Machine Learning
    acm: ComputingMethodologies_PATTERNRECOGNITION

To the best of our knowledge, there are no general well-founded robust methods for statistical unsupervised learning. Most of the unsupervised methods explicitly or implicitly depend on the kernel covariance operator (kernel CO) or kernel cross-covariance operator (kern... View more
  • References (42)
    42 references, page 1 of 5

    J.G. Adrover and S. M. donato. A robust predictive approach for canonical correlation analysis. Journal of Multivariate Analysis., 133:356-376, 2015.

    S. Akaho. A kernel method for canonical correlation analysis. International meeting of psychometric Society., 35:321-377, 2001.

    M. A. Alam and K. Fukumizu. Hyperparameter selection in kernel principal component analysis. Journal of Computer Science, 10(7):1139-1150, 2014.

    M. A. Alam and K. Fukumizu. Higher-order regularized kernel canonical correlation analysis. International Journal of Pattern Recognition and Artificial Intelligence, 29(4):1551005(1-24), 2015.

    M. A. Alam, M. Nasser, and K. Fukumizu. A comparative study of kernel and robust canonical correlation analysis. Journal of Multimedia., 5:3-11, 2010.

    C. Alzate and J. A. K. Suykens. A regularized kernel CCA contrast function for ICA. Neural Networks, 21:170-181, 2008.

    T. W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley& Sons, third edition, 2003.

    N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68:337-404, 1950.

    F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008.

    F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine Learning Research, 3:1-48, 2002.

  • Metrics
Share - Bookmark