Robust Kernel (Cross-) Covariance Operators in Reproducing Kernel Hilbert Space toward Kernel Methods
- Published: 17 Feb 2016
J.G. Adrover and S. M. donato. A robust predictive approach for canonical correlation analysis. Journal of Multivariate Analysis., 133:356-376, 2015.
S. Akaho. A kernel method for canonical correlation analysis. International meeting of psychometric Society., 35:321-377, 2001.
M. A. Alam and K. Fukumizu. Hyperparameter selection in kernel principal component analysis. Journal of Computer Science, 10(7):1139-1150, 2014. [OpenAIRE]
M. A. Alam and K. Fukumizu. Higher-order regularized kernel canonical correlation analysis. International Journal of Pattern Recognition and Artificial Intelligence, 29(4):1551005(1-24), 2015.
M. A. Alam, M. Nasser, and K. Fukumizu. A comparative study of kernel and robust canonical correlation analysis. Journal of Multimedia., 5:3-11, 2010.
C. Alzate and J. A. K. Suykens. A regularized kernel CCA contrast function for ICA. Neural Networks, 21:170-181, 2008. [OpenAIRE]
T. W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley& Sons, third edition, 2003.
N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68:337-404, 1950. [OpenAIRE]
F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008.
F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine Learning Research, 3:1-48, 2002.
K. Bache and M. Lichman. UCI machine learning repository, 2013. http://archive.ics.uci.edu/ml.
A. Christmann and I. Steinwart. On robustness properties of convex risk minimization methods for pattern recognition. Journal of Machine Learning Research, 5:1007-1034, 2004. [OpenAIRE]
A. Christmann and I. Steinwart. Consistency and robustness of kernel-based regression in convex risk minimization. Bernoulli, 13(3):799-819, 2007. [OpenAIRE]
M. Debruyne, M. Hubert, and J.V. Horebeek. Model selection in kernel based regression using the influence function. Journal of Machine Learning Research, 9:2377-2400, 2008. [OpenAIRE]
M. Debruyne, M. Hubert, and J.V. Horebeek. Detecting influential observations in kernel pca. Computational Statistics and Data Analysis, 54:3007-3019, 2010. [OpenAIRE]