publication . Article . Preprint . 2018

Face centered cubic SnSe as a $\mathbb{Z}_2$ trivial Dirac nodal line material

Ikuma Tateishi; Hiroyasu Matsuura;
Open Access
  • Published: 15 Jul 2018 Journal: Journal of the Physical Society of Japan, volume 87, page 73,702 (issn: 0031-9015, eissn: 1347-4073, Copyright policy)
  • Publisher: Physical Society of Japan
Abstract
The presence of a Dirac nodal line in a time-reversal and inversion symmetric system is dictated by the $\mathbb{Z}_2$ index when spin-orbit interaction is absent. In a first principles calculation, we show that a Dirac nodal line can emerge in $\mathbb{Z}_2$ trivial material by calculating the band structure of SnSe in a face centered cubic lattice as an example. We qualitatively show that it becomes a topological crystalline insulator when spin-orbit interaction is taken into account. We clarify the origin of the Dirac nodal line by obtaining irreducible representations corresponding to bands and explain the triviality of the $\mathbb{Z}_2$ index. We construct...
Subjects
free text keywords: General Physics and Astronomy, Condensed Matter - Mesoscale and Nanoscale Physics, NODAL, Triviality, Cubic crystal system, Mathematical physics, Dirac (video compression format), Crystal, Geometric phase, Irreducible representation, Physics, Electronic band structure
25 references, page 1 of 2

1) Youngkuk Kim, Benjamin J. Wieder, C. L. Kane, and Andrew M. Rappe, Phys. Rev. Lett. 115, 036806 (2015).

2) Yongping Du, Feng Tang, DiWang, Li Sheng, Er-jun Kan, Chun-Gang Duan, Sergey Y Savrasov, and Xiangang Wan, Njp Quantum. Matter. 2, 3 (2017).

3) L. S. Xie, L. M. Schoop, E. M. Seibel, Q. D. Gibson, W. Xie, and R. J. Cava, APL Mater. 3, 083602 (2015).

4) M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, Nat. Commun. 8, 14022 (2017).

5) M. Neupane, et al., Phys. Rev. B 93, 201104(R) (2016).

6) B. Feng, et al,. Nat. Commun. 8, 1007 (2017).

7) Shuo-Ying Yang, Hao Yang, Elena Derunova, Stuart S. P. Parkin, Binghai Yan, and Mazhar N. Ali, arXiv preprint arXiv:1707.004523, (2017).

8) Fu, L., C.L. Kane, and E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

9) Huaqing Huang, Jianpeng Liu, David Vanderbilt, and Wenhui Duan, Physical Review B, 93 201114(R), (2016).

10) L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

11) Timothy H. Hsieh, Hsin Lin, Junwei Liu, Wenhui Duan, Arun Bansil and Liang Fu, Nat. Commun. 3, 982 (2012).

12) Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, and Y. Ando, Nat. Phys. 8, 800 (2012).

13) Paolo Giannozzi, et al., J. Phys. Condens. Matter 21, 395502 (2009).

14) J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998).

15) Y. W. Tung and M. L. Cohen, Phys. Rev. 180, 823 (1969).

25 references, page 1 of 2
Any information missing or wrong?Report an Issue