Share  Bookmark

 Download from


[2] J.A. Bergstra. (2011).
[3] J.A. Bergstra, I. Bethke. Note on paraconsistency and reasoning about fractions. J. of Applied NonClassical Logics. http://dx.doi.org/10.1080/11663081.2015.1047232 (2015).
[4] J.A. Bergstra, Y. Hirshfeld, and J.V. Tucker. Meadows and the equational specification of division. Theoretical Computer Science, 410 (12), 12611271 (2009).
[5] J. A. Bergstra, I. Bethke, and A. Ponse. Cancellation meadows: a generic basis theorem and some applications. The Computer Journal, 56(1): 314, doi:10.1093/comjnl/bsx147 (2013).
[6] J.A. Bergstra and C.A. Middelburg. Inversive meadows and divisive meadows. Journal of Applied Logic, 9(3): 203220 (2011).
[7] J.A. Bergstra and C.A. Middelburg. Division by zero in noninvolutive meadows. Journal of Applied Logic, 13(1): 112 (2015).
[8] J.A. Bergstra and A. Ponse. Division by zero in common meadows. In R. de Nicola and R. Hennicker (editors), Software, Services, and Systems (Wirsing Festschrift), LNCS 8950, pages 4661, Springer, 2015. Also available at arXiv:1406.6878v2 [math.RA], (2015).
[9] J.A. Bergstra and A. Ponse. Fracpairs: fractions over a reduced commutative ring. arXiv:1406.4410 [math.RA], (2014).
[10] J.A. Bergstra and A. Ponse. Three datatype defining rewrite systems for datatypes of integers each extending a datatype of naturals. arXiv:1406.3280 [math.LO], (2014).
[11] J.A. Bergstra and A. Ponse. Polyinfix operators and operator families. arXiv:1505.01087 [math.HO], (2015).