Walk and Learn: Facial Attribute Representation Learning from Egocentric Video and Contextual Data

Preprint English OPEN
Wang, Jing; Cheng, Yu; Feris, Rogerio Schmidt;
  • Subject: Computer Science - Computer Vision and Pattern Recognition

The way people look in terms of facial attributes (ethnicity, hair color, facial hair, etc.) and the clothes or accessories they wear (sunglasses, hat, hoodies, etc.) is highly dependent on geo-location and weather condition, respectively. This work explores, for the fi... View more
  • References (59)
    59 references, page 1 of 6

    [1] P. Agrawal, J. Carreira, and J. Malik. Learning to see by moving. In Proc. ICCV, 2015.

    [2] T. Berg and P. N. Belhumeur. POOF: Part-Based One-vsOne Features for fine-grained categorization, face verification, and attribute estimation. In Proc. CVPR, 2013.

    [3] A. Betancourt, P. Morerio, C. S. Regazzoni, and M. Rauterberg. The evolution of first person vision methods: A survey. IEEE Trans. Circuits Syst. Video Techn., 25(5):744-760, 2015.

    [4] H. Chen, A. Gallagher, and B. Girod. What's in a name: First names as facial attributes. In Proc. CVPR, 2013.

    [5] Q. Chen, J. Huang, R. Feris, L. M. Brown, J. Dong, and S. Yan. Deep domain adaptation for describing people based on fine-grained clothing attributes. In Proc. CVPR, 2015.

    [6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In Proc. CVPR, 2009.

    [7] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In Proc. ICCV, 2015.

    [8] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What makes paris look like paris? ACM Trans. Graph., 31(4):101:1-101:9, July 2012.

    [9] A. Fathi, J. K. Hodgins, and J. M. Rehg. Social interactions: A first-person perspective. In Proc. CVPR, 2012.

    [10] A. Fathi, Y. Li, and J. M. Rehg. Learning to recognize daily actions using gaze. In Proc. ECCV, 2012.

  • Metrics
Share - Bookmark