Torus equivariant spectral triples for odd dimensional quantum spheres coming from $C^*$-extensions

Preprint English OPEN
Chakraborty, Partha Sarathi ; Pal, Arupkumar (2007)
  • Subject: 58B34, 46L87, 19K33 | Mathematics - Operator Algebras | Mathematics - K-Theory and Homology | Mathematics - Quantum Algebra
    arxiv: Mathematics::K-Theory and Homology | Mathematics::Operator Algebras

The torus group $(S^1)^{\ell+1}$ has a canonical action on the odd dimensional sphere $S_q^{2\ell+1}$. We take the natural Hilbert space representation where this action is implemented and characterize all odd spectral triples acting on that space and equivariant with respect to that action. This characterization gives a construction of an optimum family of equivariant spectral triples having nontrivial $K$-homology class thus generalizing our earlier results for $SU_q(2)$. We also relate the triple we construct with the $C^*$-extension \[ 0\longrightarrow \clk\otimes C(S^1)\longrightarrow C(S_q^{2\ell+3}) \longrightarrow C(S_q^{2\ell+1}) \longrightarrow 0. \]
  • References (11)
    11 references, page 1 of 2

    [1] Baaj, S. ; Julg, P. : Thrie bivariante de Kasparov et opateurs non born dans les C∗-modules hilbertiens. (French. English summary) [Bivariant Kasparov theory and unbounded operators on Hilbert C∗-modules] C. R. Acad. Sci. Paris S. I Math. 296 (1983), no. 21, 875-878.

    [2] Blackadar, Bruce : K-theory for operator algebras, Second edition. MSRI Publications, 5. Cambridge University Press, Cambridge, 1998.

    [3] Chakraborty, P. S. ; Pal, A. : Equivariant spectral triples on the quantum SU (2) group, arXiv:math.KT/0201004, K-Theory, 28(2003), No. 2, 107-126.

    [4] Chakraborty, P. S. ; Pal, A. : Spectral triples and associated Connes-de Rham complex for the quantum SU (2) and the quantum sphere, arXiv:math.QA/0210049, Commun. Math. Phys., 240(2003), No. 3, 447-456.

    [5] Chakraborty, P. S. ; Pal, A. : Characterization of SUq(ℓ + 1)-equivariant spectral triples for the odd dimensional quantum spheres, arXiv:math.QA/0701694.

    [6] Connes, A. : Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergodic Theory Dynam. Systems 9 (1989), no. 2, 207-220.

    [7] Connes, A. : Noncommutative Geometry, Academic Press, 1994.

    [8] Hong, Jeong Hee; Szyman´ski, Wojciech : Quantum spheres and projective spaces as graph algebras. Comm. Math. Phys. 232 (2002), no. 1, 157-188.

    [9] Korogodski, Leonid I.; Soibelman, Yan S. : Algebras of functions on quantum groups. Part I. Mathematical Surveys and Monographs, 56. American Mathematical Society, Providence, RI, 1998.

    [10] Rosenberg, J. & Schochet, C. : The Ku¨nneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke Math. J. 55 (1987), no. 2, 431-474.

  • Similar Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark