Bi-amalgamations subject to the arithmetical property

Preprint English OPEN
Kabbaj, S.; Mahdou, N.; Moutui, M. A. S.;
(2016)
  • Subject: 13F05, 13A15, 13E05, 13F20, 13C10, 13C11, 13F30, 13D05, 16D40, 16E10, 16E60 | Mathematics - Commutative Algebra

This paper establishes necessary and sufficient conditions for a bi-amalgamation to inherit the arithmetical property, with applications on the weak global dimension and transfer of the semihereditary property. The new results compare to previous works carried on variou... View more
  • References (33)
    33 references, page 1 of 4

    [1] J. Abuihlail, M. Jarrar and S. Kabbaj, Commutative rings in which every finitely generated ideal is quasiprojective, J. Pure Appl. Algebra 215 (2011) 2504-2511. 2

    [2] K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc. 41 (3) (2015) 625-632. 8

    [3] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (1) (2009) 3-56. 9

    [4] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Pru¨ fer conditions, J. Pure Appl. Algebra 214 (2010) 53-60. 2

    [5] S. Bazzoni and S. Glaz, Pru¨ fer rings, in: J. Brewer, S. Glaz, W. Heinzer, B. Olberding (Eds.), Multiplicative Ideal Theory in Commutative Algebra: A tribute to the work of Robert Gilmer, Springer, New York, 2006, pp. 55-72. 2, 7, 8

    [6] S. Bazzoni and S. Glaz, Gaussian properties of total rings of quotients, J. Algebra 310 (2007) 180-193. 2

    [7] M. Boisen Jr. and P. Sheldon, CPI-extension: overrings of integral domains with special prime spectrum, Canad. J. Math. 29 (1977) 722-737. 1

    [8] J. G. Boynton, Pullbacks of arithmetical rings, Comm. Algebra 35 (2007) 2671-2684. 2, 5

    [9] J. G. Boynton, Pullbacks of Pru¨ fer rings, J. Algebra 320 (2008) 2559-2566. 2, 5

    [10] J. G. Boynton, Pru¨ fer conditions and the total quotient ring, Comm. Algebra 39 (5) (2011) 1624-1630. 2

  • Metrics
Share - Bookmark