33 references, page 1 of 4 [1] J. Abuihlail, M. Jarrar and S. Kabbaj, Commutative rings in which every finitely generated ideal is quasiprojective, J. Pure Appl. Algebra 215 (2011) 2504-2511. 2

[2] K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc. 41 (3) (2015) 625-632. 8

[3] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (1) (2009) 3-56. 9

[4] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Pru¨ fer conditions, J. Pure Appl. Algebra 214 (2010) 53-60. 2

[5] S. Bazzoni and S. Glaz, Pru¨ fer rings, in: J. Brewer, S. Glaz, W. Heinzer, B. Olberding (Eds.), Multiplicative Ideal Theory in Commutative Algebra: A tribute to the work of Robert Gilmer, Springer, New York, 2006, pp. 55-72. 2, 7, 8

[6] S. Bazzoni and S. Glaz, Gaussian properties of total rings of quotients, J. Algebra 310 (2007) 180-193. 2

[7] M. Boisen Jr. and P. Sheldon, CPI-extension: overrings of integral domains with special prime spectrum, Canad. J. Math. 29 (1977) 722-737. 1

[8] J. G. Boynton, Pullbacks of arithmetical rings, Comm. Algebra 35 (2007) 2671-2684. 2, 5

[9] J. G. Boynton, Pullbacks of Pru¨ fer rings, J. Algebra 320 (2008) 2559-2566. 2, 5

[10] J. G. Boynton, Pru¨ fer conditions and the total quotient ring, Comm. Algebra 39 (5) (2011) 1624-1630. 2