publication . Preprint . 2013

Robust bounds on risk-sensitive functionals via Renyi divergence

Atar, Rami; Chowdhary, Kamaljit; Dupuis, Paul;
Open Access English
  • Published: 23 Oct 2013
Comment: 20 pages, 2 figures
free text keywords: Mathematics - Probability
Funded by
NSF| Large Deviation Methods for the Analysis and Design of Accelerated Monte Carlo Schemes
  • Funder: National Science Foundation (NSF)
  • Project Code: 1317199
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences
Download from
26 references, page 1 of 2

[1] V. Anantharam. How large delays build up in a GI/G/1 queue. Queueing Systems Theory Appl., 5(4):345-367, 1989.

[2] S. Asmussen and P.W. Glynn. Stochastic Simulation: Algorithms and Analysis. Applications of Mathematics. Springer Science+Business Media, LLC, 2007.

[3] A. Bhattacharyya. On some analogues of the amount of information and their use in statistical estimation. Sankhy¯a, 8:1-14, 1946.

[4] J.H. Blanchet and P. Glynn. Efficient rare-event simulation for the maximum of heavy-tailed random walks. Ann. Appl. Prob., 18:1351- 1378, 2008. [OpenAIRE]

[5] A. N. Borodin and P. Salminen. Handbook of Brownian motion-facts and formulae. Probability and its Applications. Birkh¨auser Verlag, Basel, second edition, 2002.

[6] D. Chafa¨ı. Entropies, convexity, and functional inequalities: on Φ- entropies and Φ-Sobolev inequalities. J. Math. Kyoto Univ., 44(2):325- 363, 2004.

[7] K. Chowdhary and P. Dupuis. Distinguishing and integrating aleatoric and epistemic variation in uncertainty quantification. ESAIM: Mathematical Modelling and Numerical Analysis, 47:635-662, 2013.

[8] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Jones and Bartlett, Boston, 1993.

[9] P. Dupuis and R. S. Ellis. A Weak Convergence Approach to the Theory of Large Deviations. John Wiley & Sons, New York, 1997.

[10] P. Dupuis and R.S. Ellis. Large deviations for Markov processes with discontinuous statistics, II: Random walks. Probab. Th. Rel. Fields, 91:153-194, 1992.

[11] P. Dupuis, M. R. James, and I. R. Petersen. Robust properties of risksensitive control. Math. Control Signals Systems, 13:318-332, 2000.

[12] P. Dupuis and H. Wang. Subsolutions of an Isaacs equation and efficient schemes for importance sampling. Math. Oper. Res., 32:1-35, 2007.

[13] K. Dvijotham and E. Todorov. A unified theory of linearly solvable optimal control. Artificial Intelligence (UAI), page 1, 2011.

[14] M. I. Freidlin and A. D. Wentzell. Random Perturbations of Dynamical Systems. Springer-Verlag, New York, 1984.

[15] L. Golshani, E. Pasha, and G. Yari. Some properties of R´enyi entropy and R´enyi entropy rate. Inform. Sci., 179(14):2426-2433, 2009. [OpenAIRE]

26 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue