publication . Preprint . Article . 2015

Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin–orbit coupling

Gao Xianlong;
Open Access English
  • Published: 15 Jan 2015
We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the ...
arXiv: High Energy Physics::Lattice
free text keywords: Condensed Matter - Quantum Gases, General Physics and Astronomy
Related Organizations
48 references, page 1 of 4

[1] X.-G. Wen, Int. J. Mod. Phys. B 4, 239 (1990).

[2] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[3] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).

[4] S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73, 220502(R) (2006).

[5] V. Gurarie and L. Radzihovsky, Phys, Rev. B 75, 212509 (2007).

[6] S. S. Botehlh and C. A. R. S´a de Melo, J. Low Temp. Phys. 140, 409 (2005).

[7] S. Tewari, S. Das Sarma, C. Nayak, C. Zhang, and P. Zoller, Phys. Rev. Lett. 98, 010506 (2007).

[8] V. Gurarie and L. Radzihovsky, Ann. Phys. 322, 2 (2007).

[9] C. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. Lett. 101, 160401 (2008).

[10] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009).

[11] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

[12] J. Alicea, Phys. Rev. B 81, 125318 (2010).

[13] Y.-J. Lin, K. Jim´enez-Garc´ıa, and I. B. Spielman, Nature 471, 83 (2011).

[14] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).

[15] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012).

48 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue