## On the Topology of Black Hole Event Horizons in Higher Dimensions

*Helfgott, C.*;

*Oz, Y.*;

*Yanay, Y.*;

Related identifiers: doi: 10.1088/1126-6708/2006/02/025 - Subject: High Energy Physics - Theoryarxiv: General Relativity and Quantum Cosmology

- References (13) 13 references, page 1 of 2
- 1
- 2

[1] S. W. Hawking, G. F. R. Ellis, “The Large Scale Structure of Space-Time”, Cambridge Monographs on Mathematical Physics (1973).

[2] J. L. Friedman, K. Schleich and D. M. Witt, “Topological censorship,” Phys. Rev. Lett. 71, 1486 (1993) [Erratum-ibid. 75, 1872 (1995)] [arXiv:gr-qc/9305017].

[3] P. T. Chrusciel and R. M. Wald, “On the topology of stationary black holes,” Class. Quant. Grav. 11, L147 (1994) [arXiv:gr-qc/9410004].

[4] H. S. Reall, “Higher dimensional black holes and supersymmetry,” Phys. Rev. D 68, 024024 (2003) [Erratum-ibid. D 70, 089902 (2004)] [arXiv:hep-th/0211290].

[5] R. Emparan and H. S. Reall, “A rotating black ring in five dimensions,” Phys. Rev. Lett. 88, 101101 (2002) [arXiv:hep-th/0110260].

[6] W. Thurston, “The Geometry and Topology of Three-Manifolds”, Vol 1, ed. S. Levi, Princeton University Press (1997).

[7] P. Thomas, “The Geometries of 3-Manifolds”, Bull. London. Math. Soc. 15, 401 (1983).

[8] M. l. Cai and G. J. Galloway, “On the topology and area of higher dimensional black holes,” Class. Quant. Grav. 18, 2707 (2001) [arXiv:hep-th/0102149].

[9] J. Milnor and J. Stasheff, “Characteristic Classes”, Princeton University Press (1974).

[10] D. Freed and K. Uhlenbeck, “Instantons and Four-Manifolds”, Mathematical Sciences Research Institute Publications, Springer Verlag (1991).

- Similar Research Results (10)
- Metrics No metrics available

- Download from

- Cite this publication