26 references, page 1 of 2

[1] George Avalos, Irena Lasiecka, and Roberto Triggiani. Higher regularity of a coupled parabolic-hyperbolic uid-structure interactive system. Georgian Math. J., 15(3):403{437, 2008.

[3] Viorel Barbu, Zoran Grujic, Irena Lasiecka, and Amjad Tu aha. Smoothness of weak solutions to a nonlinear uid-structure interaction model. Indiana Univ. Math. J., 57(3):1173{1207, 2008.

[4] Ham Brezis. Analyse fonctionnelle. Collection Mathematiques Appliquees pour la Ma^trise. [Collection of Applied Mathematics for the Master's Degree]. Masson, Paris, 1983. Theorie et applications. [Theory and applications].

[5] M. Bukac, S. Canic, and B. Muha. A partitioned scheme for uid-composite structure interaction problems. submitted, 2013. [OpenAIRE]

[6] P. Causin, J. F. Gerbeau, and F. Nobile. Added-mass e ect in the design of partitioned algorithms for uid-structure problems. Comput. Methods Appl. Mech. Engrg., 194(42-44):4506{4527, 2005. [OpenAIRE]

[7] Daniel Coutand and Steve Shkoller. Motion of an elastic solid inside an incompressible viscous uid. Arch. Ration. Mech. Anal., 176(1):25{102, 2005.

[8] Daniel Coutand and Steve Shkoller. The interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Ration. Mech. Anal., 179(3):303{352, 2006.

[9] Q. Du, M. D. Gunzburger, L. S. Hou, and J. Lee. Analysis of a linear uidstructure interaction problem. Discrete Contin. Dyn. Syst., 9(3):633{650, 2003.

[10] Thomas Duyckaerts. Optimal decay rates of the energy of a hyperbolicparabolic system coupled by an interface. Asymptot. Anal., 51(1):17{45, 2007.

[11] Giovanni P. Galdi. On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In Handbook of mathematical uid dynamics, Vol. I, pages 653{791. North-Holland, Amsterdam, 2002.

[12] Scott Hansen and Enrique Zuazua. Exact controllability and stabilization of a vibrating string with an interior point mass. SIAM J. Control Optim., 33(5):1357{1391, 1995.

[13] Mihaela Ignatova, Igor Kukavica, Irena Lasiecka, and Amjad Tu aha. On well-posedness for a free boundary uid-structure model. J. Math. Phys., 53(11):115624, 13, 2012.

[14] Herbert Koch and Enrique Zuazua. A hybrid system of PDE's arising in multi-structure interaction: coupling of wave equations in n and n 1 space dimensions. In Recent trends in partial di erential equations, volume 409 of Contemp. Math., pages 55{77. Amer. Math. Soc., Providence, RI, 2006.

[15] I. Kukavica and A. Tu aha. Solutions to a uid-structure interaction free boundary problem. DCDS-A, 32(4):1355{1389, 2012.

[16] Igor Kukavica and Amjad Tu aha. Solutions to a free boundary problem of uid-structure interaction. Indiana Univ. Math. J., 61:1817{1859, 2012.

26 references, page 1 of 2