publication . Article . Preprint . 2017

Deep Galaxy: Classification of Galaxies based on Deep Convolutional Neural Networks

Nour Eldeen M. Khalifa; Taha, Mohamed Hamed N.; Hassanien, Aboul Ella; Selim, I. M.;
  • Published: 01 Sep 2017
Abstract
In this paper, a deep convolutional neural network architecture for galaxies classification is presented. The galaxy can be classified based on its features into main three categories Elliptical, Spiral, and Irregular. The proposed deep galaxies architecture consists of 8 layers, one main convolutional layer for features extraction with 96 filters, followed by two principles fully connected layers for classification. It is trained over 1356 images and achieved 97.272% in testing accuracy. A comparative result is made and the testing accuracy was compared with other related works. The proposed architecture outperformed other related works in terms of testing accu...
Subjects
free text keywords: Computer Science - Computer Vision and Pattern Recognition
Related Organizations

[1] M. Abd Elfattah, N. El-Bendary, M. A. Abu Elsoud, A. E. Hassanien, and M. F. Tolba, An intelligent approach for galaxies images classification, in 13th International Conference on Hybrid Intelligent Systems (HIS 2013), 2013, pp. 167172.

[2] M. Abd Elfattah, N. Elbendary, H. K. Elminir, M. A. Abu El-Soud, and A. E. Hassanien, Galaxies image classification using empirical mode decomposition and machine learning techniques, in 2014 International Conference on Engineering and Technology (ICET), 2014, pp. 15. [OpenAIRE]

[3] A. Adams and A. Woolley, Hubble classification of galaxies using neural networks, Vistas Astron., vol. 38, pp. 273280, Jan. 1994.

[4] A. Dominguez, A History of the Convolution Operation [Retrospectroscope], IEEE Pulse, vol. 6, no. 1, pp. 3849, Jan. 2015.

[5] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE, vol. 86, no. 11, pp. 22782324, 1998.

[6] S. Srinivas, R. K. Sarvadevabhatla, K. R. Mopuri, N. Prabhu, S. S. S. Kruthiventi, and R. V. Babu, A Taxonomy of Deep Convolutional Neural Nets for Computer Vision, Front. Robot. AI, vol. 2, p. 36, 2016.

[7] H. Jiang and E. Learned-Miller, Face Detection with the Faster R-CNN, in 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), 2017, pp. 650657.

[8] J. De La Calleja and O. Fuentes, Machine learning and image analysis for morphological galaxy classification, Mon. Not. R. Astron. Soc., vol. 349, no. 1, pp. 8793, 2004.

[9] M. Marin, L. E. Sucar, J. A. Gonzalez, and R. Dia z, A Hierarchical Model for Morphological Galaxy Classification, in Proceedings of the TwentySixth International Florida Artificial Intelligence Research Society Conference, 2013, pp. 438443. [OpenAIRE]

[10] I. M. Selim, A. E., and B. M.El, Galaxy Image Classification using Non-Negative Matrix Factorization, Int. J. Comput. Appl., vol. 137, no. 5, pp. 48, Mar. 2016.

[11] I. M. Selim and M. Abd El Aziz, Automated morphological classification of galaxies based on a projection gradient nonnegative matrix factorization algorithm, Exp. Astron., vol. 43, no. 2, pp. 131144, Apr. 2017. Baillard, A., Bertin, E., de Lapparent, et. al.: Astron Astrophys 532

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2017

Deep Galaxy: Classification of Galaxies based on Deep Convolutional Neural Networks

Nour Eldeen M. Khalifa; Taha, Mohamed Hamed N.; Hassanien, Aboul Ella; Selim, I. M.;