publication . Preprint . Article . 2018

Geometrical picture of photocounting measurements

O. P. Kovalenko; J. Sperling; W. Vogel; A. A. Semenov;
Open Access English
  • Published: 28 Feb 2018
Abstract
We revisit the representation of generalized quantum observables by establishing a geometric picture in terms of their positive operator-valued measures (POVMs). This leads to a clear geometric interpretation of Born's rule by introducing the concept of contravariant operator-valued measures. Our approach is applied to the theory of array detectors, which is a challenging task as the finite dimensionality of the POVM substantially restricts the available information about quantum states. Our geometric technique allows for a direct estimation of expectation values of different observables, which are typically not accessible with such detection schemes. In additio...
Subjects
free text keywords: Quantum Physics, Curse of dimensionality, Quantum, Covariance and contravariance of vectors, Quantum mechanics, Observable, Detector, Statistical physics, Physics, Quantum state, POVM, Homodyne detection
Funded by
EC| QCUMbER
Project
QCUMbER
Quantum Controlled Ultrafast Multimode Entanglement and Measurement
  • Funder: European Commission (EC)
  • Project Code: 665148
  • Funding stream: H2020 | RIA
Communities
FET H2020FET OPEN: FET-Open research projects
FET H2020FET OPEN: Quantum Controlled Ultrafast Multimode Entanglement and Measurement
64 references, page 1 of 5

[1] M. Born, Zur Quantenmechanik der Sto vorgange, Z. Physik 37, 863 (1926).

[2] U. Sinha, Ch. Couteau, Th. Jennewein, R. La amme, and G. Weihs, Ruling Out Multi-Order Interference in Quantum Mechanics, Science 329, 418 (2010).

[3] J. Harris, F. Bouchard, E. Santamato, W. H. Zurek, R. W. Boyd, and E. Karim, Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule, New J. Phys. 18, 053013 (2016).

[4] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).

[5] P. L. Kelley and W. H. Kleiner, Theory of Electromagnetic Field Measurement and Photoelectron Counting, Phys. Rev. 136, A316 (1964).

[6] G. S. Agarwal and K. Tara, Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics, Phys. Rev. A 46, 485 (1992). [OpenAIRE]

[7] B. Kuhn, W. Vogel, and J. Sperling, Displaced photonnumber entanglement tests, Phys. Rev. A 96, 032306 (2017).

[8] K. E. Cahill and R. J. Glauber, Ordered Expansions in Boson Amplitude Operators, Phys. Rev. 177, 1857 (1969).

[9] K. E. Cahill and R. J. Glauber, Density Operators and Quasiprobability Distributions, Phys. Rev. 177, 1882 (1969).

[10] S. Wallentowitz and W. Vogel, Unbalanced homodyning for quantum state measurements, Phys. Rev. A 53, 4528, (1996). [OpenAIRE]

[11] S. Mancini, P. Tombesi, and V. I. Man'ko, Density matrix from photon number tomography, Europhys. Lett. 37, 79 (1997).

[12] K. Banaszek, C. Radzewicz, K. Wodkiewicz, and J. S. Krasinski, Direct measurement of the Wigner function by photon counting, Phys. Rev. A 60, 674 (1999). [OpenAIRE]

[13] C. Silberhorn, Detecting quantum light, Contemp. Phys. 48, 143 (2007).

[14] H. Paul, P. Torma, T. Kiss, and I. Jex, Photon Chopping: New Way to Measure the Quantum State of Light, Phys. Rev. Lett. 76, 2464 (1996). [OpenAIRE]

[15] S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, Reduced deadtime and higher rate photoncounting detection using a multiplexed detector array, J. Mod. Opt. 54, 337 (2007). [OpenAIRE]

64 references, page 1 of 5
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2018

Geometrical picture of photocounting measurements

O. P. Kovalenko; J. Sperling; W. Vogel; A. A. Semenov;