publication . Preprint . Article . 2009

Numerical method for evolving the dipolar projected Gross-Pitaevskii equation

P. B. Blakie; C. Ticknor; A. S. Bradley; A. M. Martin; M. J. Davis; Y. Kawaguchi;
Open Access English
  • Published: 15 Jul 2009
Abstract
We describe a method for evolving the projected Gross-Pitaevskii equation (PGPE) for an interacting Bose gas in a harmonic oscillator potential, with the inclusion of a long-range dipolar interaction. The central difficulty in solving this equation is the requirement that the field is restricted to a small set of prescribed modes that constitute the low energy c-field region of the system. We present a scheme, using a Hermite-polynomial based spectral representation, that precisely implements this mode restriction and allows an efficient and accurate solution of the dipolar PGPE. We introduce a set of auxiliary oscillator states to perform a Fourier transform ne...
Subjects
arXiv: Condensed Matter::Quantum Gases
free text keywords: Condensed Matter - Quantum Gases, Condensed Matter - Statistical Mechanics, Physics - Computational Physics, Statistics and Probability, Statistical and Nonlinear Physics, Condensed Matter Physics, Classical mechanics, Quantum mechanics, Physics, Angular momentum, Numerical analysis, Gross–Pitaevskii equation, Ehrenfest equations, Harmonic oscillator, Bose gas, Fourier transform, symbols.namesake, symbols, Hermite polynomials
54 references, page 1 of 4

[1] J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, and L. Santos, Phys. Rev. Lett. 95, 150406 (2005).

[2] J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, Phys. Rev. Lett. 94, 203001 (2005).

[3] J. Kleinert, C. Haimberger, P. J. Zabawa, and N. P. Bigelow, Phys. Rev. Lett. 99, 143002 (2007).

[4] T. Lahaye, T. Koch, B. Fro¨hlich, M. Fattori, J. Metz, A. Griesmaier, S. Giovanazzi, and T. Pfau, Nature 448, 672 (2007).

[5] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe'er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008).

[6] M. A. Baranov, M. S. Mar'enko, V. S. Rychkov, and G. V. Shlyapnikov, Phys. Rev. A 66, 013606 (2002).

[7] K. Go´ral, L. Santos, and M. Lewenstein, Phys. Rev. Lett. 88, 170406 (2002).

[8] D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).

[9] D. H. J. O'Dell, S. Giovanazzi, and G. Kurizki, Phys. Rev. Lett. 90, 110402 (2003).

[10] Y. Kawaguchi, H. Saito, and M. Ueda, Phys. Rev. Lett. 96, 080405 (2006).

[11] P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, Phys. Rev. Lett. 97, 033003 (2006).

[12] H. P. Bu¨chler, E. Demler, M. Lukin, A. Micheli, N. Prokof'ev, G. Pupillo, and P. Zoller, Phys. Rev. Lett. 98, 060404 (2007).

[13] C. Ticknor, Phys. Rev. Lett. 100, 133202 (2008).

[14] K. Go´ral, K. Rza¸z˙ewski, and T. Pfau, Phys. Rev. A 61, 051601 (2000).

[15] S. Ronen, D. C. E. Bortolotti, D. Blume, and J. L. Bohn, Phys. Rev. A 74, 033611 (2006).

54 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2009

Numerical method for evolving the dipolar projected Gross-Pitaevskii equation

P. B. Blakie; C. Ticknor; A. S. Bradley; A. M. Martin; M. J. Davis; Y. Kawaguchi;