publication . Other literature type . Preprint . Article . 2015

Whitney towers, Gropes and Casson-Gordon style invariants of links

Min Hoon Kim;
Open Access English
  • Published: 19 Jun 2015
  • Publisher: MSP
Abstract
Comment: 23 pages
Subjects
arXiv: Mathematics::Geometric TopologyMathematics::Algebraic Topology
free text keywords: link concordance, Whitney tower concordance, grope concordance, Casson–Gordon invariant, 57M25, 57M27, 57N70, Mathematics - Geometric Topology, Alexander polynomial, Topology, Cobordism, Tower, Linking number, symbols.namesake, symbols, Algebra, Hopf link, Conjecture, Invariant (mathematics), Combinatorics, Mathematics
32 references, page 1 of 3

[Bla57] R. C. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. (2) 65 (1957), 340-356.

[CF77] R. H. Crowell and R. H. Fox, Introduction to knot theory, Springer-Verlag, New York, 1977, Reprint of the 1963 original, Graduate Texts in Mathematics, No. 57.

[CG78] A. Casson and C. McA. Gordon, On slice knots in dimension three, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Amer. Math. Soc., Providence, R.I., 1978, pp. 39-53.

[CG86] , Cobordism of classical knots, A` la recherche de la topologie perdue, Birkh¨auser Boston, Boston, MA, 1986, With an appendix by P. M. Gilmer, pp. 181-199.

[Cha07] J. C. Cha, The structure of the rational concordance group of knots, Mem. Amer. Math. Soc. 189 (2007), no. 885, x+95.

[Cha09] , Structure of the string link concordance group and Hirzebruch-type invariants, Indiana Univ. Math. J. 58 (2009), no. 2, 891-927.

[Cha10] , Link concordance, homology cobordism, and Hirzebruch-type defects from iterated p-covers, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 555-610.

[Cha13] , Amenable L2-theoretic methods and knot concordance, Int. Math. Res. Not. IMRN (2013), no. 15, 1-36.

[Cha14] , Symmetric Whitney tower cobordism for bordered 3-manifolds and links, Trans. Amer. Math. Soc. 366 (2014), no. 6, 3241-3273.

[CHL08] T. D. Cochran, S. Harvey, and C. Leidy, Link concordance and generalized doubling operators, Algebr. Geom. Topol. 8 (2008), no. 3, 1593-1646.

[CHL09] , Knot concordance and higher-order Blanchfield duality, Geom. Topol. 13 (2009), no. 3, 1419-1482.

[CHL11] , Primary decomposition and the fractal nature of knot concordance, Math. Ann. 351 (2011), no. 2, 443-508.

[Cim04] D. Cimasoni, A geometric construction of the conway potential function, Comment. Math. Helv. 79 (2004), no. 1, 124-146.

[CK08] T. D. Cochran and T. H. Kim, Higher-order Alexander invariants and filtrations of the knot concordance group, Trans. Amer. Math. Soc. 360 (2008), no. 3, 1407-1441 (electronic).

[Coo82] D. Cooper, The universal abelian cover of a link, Low-dimensional topology (Bangor, 1979), Cambridge Univ. Press, Cambridge, 1982, pp. 51-66.

32 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Other literature type . Preprint . Article . 2015

Whitney towers, Gropes and Casson-Gordon style invariants of links

Min Hoon Kim;