61 references, page 1 of 7
1. a) W. J. Geldenhuys, S. F. Malan, J. R. Bloomquist, A. P. Marchand, C. J. Van der Schyf, Pharmacology and structure-activity relationships of bioactive polycyclic cage compounds: a focus on pentacycloundecane derivatives, Med. Res. Rev. 25 (2005) 21-48, doi: http://dx.doi.org/10.1002/med.20013. b) C. J. Van der Schyf, W. J. Geldenhuys, Polycyclic compounds: ideal drug scaffolds for the design of multiple mechanism drugs?, Neurotherapeutics 6 (2009) 175-186, doi: http:// dx.doi.org/10.1016/j.nurt.2008.10.037. c) J. Joubert, W. J. Geldenhuys, C. J. Van der Schyf, D. W. Oliver, H. G. Kruger, T. Govender, S. F. Malan, Polycyclic cage structures as lipophilic scaffolds for neuroactive drugs, ChemMedChem 7 (2012) 375-384, doi: http://dx.doi.org/10.1002/cmdc.201100559.
2. a) O. K. Onajole, P. Govender, P. D. van Helden, H. G. Kruger, G. E. Maguire, I. Wiid, T. Govender, Synthesis and evaluation of SQ109 analogues as potential anti-tuberculosis candidates, Eur. J. Med. Chem. 45 (2010) 2075-2079, doi: http://dx.doi. org/10.1016/j.ejmech.2010.01.046. b) G. Lamoureux, G. Artavia, Use of the adamantane structure in medicinal chemistry, Curr. Med. Chem. 17 (2010) 2967-2978, doi: http:// dx.doi.org/10.2174/092986710792065027. [OpenAIRE]
3. a) L. Wanka, K. Iqbal, P. R. Schreiner, The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives, Chem. Rev. 113 (2013) 3516-3604, doi: http://dx.doi. org/10.1021/cr100264t. b) J. Liu, D. Obando, V. Liao, T. Lifa, R. Codd, The many faces of the adamantyl group in drug design, Eur. J. Med. Chem. 46 (2011) 1949-1963, doi: http:// dx.doi.org/10.1016/j.ejmech.2011.01.047. [OpenAIRE]
4. R. C. Fort Jr., Adamantane - The chemistry of diamond molecules, Marcel Dekker, Inc., New York, 1976.
5. C. F. Chew, A. Guy, P. C. Biggin, Distribution and dynamics of adamantanes in a lipid bilayer, Biophys. J. 95 (2008) 5627- 5636, doi: http://dx.doi.org/10.1529/biophysj.108.139477. [OpenAIRE]
6. T. Ishikawa, Superbases for organic synthesis: guanidines, amidines and phosphazenes and related organocatalysts, John Wiley & Sons, Ltd, Chichester, West Sussex, United Kingdom, 2009., doi: http://dx.doi.org/10.1002/9780470740859.
7. E. D. Raczyńska, M. K. Cyrański, M. Gutowski, J. Rak, J.-F. Gal, P.-C. Maria, M. Darowska, K. Duczmal, Consequences of proton transfer in guanidine, J. Phys. Org. Chem. 16 (2003) 91-106, doi: http://dx.doi.org/10.1002/poc.578.
8. D. Castagnolo, S. Schenone, M. Botta, Guanylated diamines, triamines, and polyamines: Chemistry and biological properties, Chem. Rev. 111 (2011) 5247-5300, doi: http://dx.doi. org/10.1021/cr100423x. [OpenAIRE]
9.C. L. Hannon, E. V. Anslyn, The guanidinium group: Its biological role and synthetic analogs, Bioorganic Chemistry Frontiers, vol. 3, Springer, Berlin, 1993., str. 193-255.
10. R. G. S. Berlinck, Natural guanidine derivatives, Nat. Prod. Rep. 16 (1999) 339-365, doi: http://dx.doi.org/10.1039/ a900338j.