publication . Other literature type . 2001

Approximate systems with confluent bonding mappings

Lončar, Ivan;
Open Access English
  • Published: 01 Jan 2001 Journal: Glasnik matematički, volume 36, issue 1 (issn: 0017-095X, eissn: 1846-7989, Copyright policy)
  • Publisher: Croatian Mathematical Society and Department of Mathematics, University of Zagreb
Abstract
If X = {Xn, pnm, N} is a usual inverse system with confluent (monotone) bonding mappings, then the projections are confluent (monotone). This is not true for approximate inverse system. The main purpose of this paper is to show that the property of Kelley (smoothness) of the space Xn is a sufficient condition for the confluence (monotonicity) of the projections.
Subjects
free text keywords: Confluent mappings; approximate inverse system
16 references, page 1 of 2

[1] R.A. Alo and H.L. Shapiro, Normal topological spaces, Cambridge Univ. Press, 1974.

[2] M.G. Charalambous, Approximate inverse systems of uniform spaces and an application of inverse systems, Comment. Math. Univ. Carolinae, 32, 33(1991), 551-565.

[3] W.J. Charatonik, Inverse limits of smooth continua, Commentationes Math. Univ. Carolinae 23 (1982), 183-191.

[4] J.J Charatonik and W.J. Charatonik, On projections and limiting mappings of inverse systems of compact spaces, Topology and its Applications 16 (1983), 1-9. [OpenAIRE]

[5] S.T. Czuba, On dendroids with Kelley's property, Proc. Amer. Math. Soc. 102(1988), 728 - 730.

[6] R. Engelking, General Topology, PWN, Warszawa, 1977.

[7] I. Loncar, A note on approximate limits, Zbornik radova FOI Varazdin 19 (1995), 1 - 21.

[8] I. Loncar, Set convergence and local connectedness of approximate limits, Acta Mathematica Hungarica 77 (3) (1997), 193 - 213.

[9] T. Mackowiak, On smooth continua, Fund. Math. 85(1974), 79-95

[10] S. Mardesic, On approximate inverse systems and resolutions, Fund. Math. 142(1993),241-255.

[11] S. Mardesic and T. Watanabe, Approximate resolutions of spaces and mappings, Glasnik Mat. 24(3)(1989), 587-637.

[12] V. Matijevic, A note on limit and resolution of (nongauged) approximate inverse systems, Glasnik Matematicki 28 (48) (1993), 111 - 122.

[13] S.B. Nadler, Hyperspaces of sets, Marcel Dekker, Inc., New York, 1978.

[14] J. Segal, T. Watanabe, Cosmic approximate limits and xed points, Trans. Amer. Math. Soc. 333(1992), 1-61.

[15] R.W. Wardle, On a property of J.L. Kelley, Houston J. Math. 3(1977), 291 - 299.

16 references, page 1 of 2
Any information missing or wrong?Report an Issue