publication . Other literature type . 2003

ADVANTAGES AND DISADVANTAGES OF MODERN LABORATORY MEASUREMENT OF THE COEFFICIENT OF PERMEABILITY FOR SOIL MATERIALS

Veinović, Želimir; Kovačević-Zelić, Biljana; Kvasnička, Predrag;
Open Access Croatian
  • Published: 01 Jan 2003 Journal: Rudarsko-geološko-naftni zbornik, volume 15, issue 1 (eissn: 1849-0409, Copyright policy)
  • Publisher: Faculty of Mining, Geology and Petroleum Engineering University of Zagreb
Abstract
Permeability tests are one of the most often performed experiments in geotechnics. Conventional methods conducted by oedometer and triaxial apparatus have many disadvantages, the most significant being the test duration. As a consequence, errors in permeability measurements could occur. On the contrary, by applying modern flow-pump method, permeability measurements can be obtained much more rapidly. Moreover, the permeability/void ratio relation can be obtained by using adequate laboratory devices. This is particularly important for soft materials, since their permeability could vary within several orders of magnitude depending on the variation of void ratio. Th...
Subjects
free text keywords: koeficijent propusnosti;metoda zadanog protoka;hidraulički edometar;troosni uređaj, coefficient of permeability;flow-pump test;hydraulic oedometer;triaxial cell
19 references, page 1 of 2

Primljeno: 08.09.2003.

Prihvaćeno: 28.10.2003.

1. Aiban, S.A., Znidarčić. D. (1989): Evaluation of the flow pump measurements. Geotechnique 39 (4), 655-666.

2. ASTM D 5084 (1990): Standard test method for and constant head techniques for permeability measurement od a hydraulic conductivity of saturated porous materials using a flexible wall permeameter.

3. Bagchi, A. & Sopcich, D. (1989): Characterization of MSW incinerator ash, Journal of Environmental Engineering Division (ASCE), No 115 (EE-2), 447-452.

4. Daniel, D., Benson, C. (1990): Water content-density criteria for compacted soil liners, Journal of Geotechnical Engineering, Vol. 116, No. 12, 129-152.

5. Dunn, R. J. (1985): Laboratory measurement of fine-grained soil fluid conductivity, Engineering Geology, Elsevier, No. 21, 215- 223, Amsterdam.

6. GLR (1993): Geotechnics of Landfill Design and Remedial Work, Technical Recommendations, Second edition, Ernst & Sons, pp. 158, Berlin.

7. Gupta, R. P. & Swartzendruber, D. (1962): Flow-associated reduction in the hydraulic conductivity of quartz sand., Proc. Soil Sci. Soc. Am., 26, No 1, 6-10.

8. Jessberger, H. L. (1995): Waste containment with compacted clay liners, Geoenvironment 2000, ed. Y. B. Acar & D. E. Daniel, Geotechnical Special Publication No 46, Vol. 1, 463-483.

9. Kovačić, D., Kvasnička, P., Znidarčić, D. (1994): Nepropusnost glinene barijere u sanitarnim odlagalištima, Gospodarenje otpadom, Zbornik radova s III. međunarodnog simpozija, ed. Zlatko Milanović, 296-305, Zagreb.

10. Kvasnička, P. & Matešić, L. (1994): Mjerenje vodopropusnosti pomoću zadane protoke uzoraka s odlagališta otpada u Zaprešiću, Gospodarenje otpadom, Zbornik radova s III. međunarodnog simpozija, ed. Zlatko Milanović, 306-313, Zagreb.

11. Mitchell, J. K. & Younger, J. S. (1967): Abnormalities in hydraulic flow through fine-grained soils, ASTM Spec. Tech. Publ., No 417, 106-139, Philadelphia.

12. Mulabdić, M (1995): Laboratorijsko mjerenje vodopropusnosti gline za brtveni sloj odlagališta otpada Jakuševec, Priopćenja 2. savjetovanja HDMTT - Geotehnički problemi u urbanim sredinama - Varaždin 1995, Knjiga 1, Ed. Ramon Mavar, 157- 163, Zagreb.

13. Olsen, H. W. (1965): Deviations from Darcy's law in saturated clays, Proc. Soil Sci. Soc. Am., 29, No 2, 135-140.

19 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue