## Properties of the distributional finite Fourier transform

*Carmichael, Richard D.*;

- Publisher: Croatian Mathematical Society and Department of Mathematics, University of Zagreb
- Journal: Glasnik matematički,volume 51,issue 2 (issn: 0017-095X, eissn: 1846-7989)
- Subject: Analytic functions; distributions; finite Fourier transform; Cauchy integral

- References (8)
F [φ(t); x] = Z h(z) = Z We now obtain (5). Let C′ ⊂ C, m > 0, and z = x + iy ∈ T (C′, m).

For the given C′ ⊂ C and m > 0 choose b > 0 such that 0 < b < m,

[4] R. D. Carmichael and D. Mitrovi´c, Distributions and analytic functions, Longman Scientific and Technical, Harlow, 1989.

[5] R. E. Edwards, Functional analysis: theory and applications, Holt, Rinehart and Winston, New York, 1965.

[6] L. Schwartz, Th´eorie des distributions, Hermann, Paris, 1966.

[7] B. Simon, The P(φ)2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, NJ, 1974.

[8] R. F. Streater and A. S. Wightman, PCT, spin and statistics, and all that, W. A. Benjamin, Inc., New York, 1964.

[9] V. S. Vladimirov, Methods of the theory of functions of many complex variables, M.I.T. Press, Cambridge, 1966.

- Metrics No metrics available

- Download from
- HRČAK - Portal of scientific journals of Croatia via HRČAK - Portal of scientific journals of Croatia (Other literature type, 2016)

- Cite this publication