publication . Doctoral thesis . 2017

Modeling of physical processes in radio-frequency plasma thrusters

Tian, Bin;
Open Access English
  • Published: 19 Jul 2017
  • Country: Spain
Abstract
This Thesis presents an investigation of the plasma-wave interaction in Helicon Plasma Thrusters (HPT). The HPT is a new concept of electric space propulsion, which generates plasmas with RF heating and provides thrust by the electrodeless acceleration of plasmas in a magnetic nozzle. An in-depth and extensive literature review of the state of the art of the models and experiments of plasma-wave interaction in helicon plasma sources and thrusters is carried out. Then, a theoretical and numerical study of plasma-wave interaction is presented. Models for homogeneous (0D), radially inhomogeneous (1D) and axisymmetric (2D) plasma columns are derived and implemented ...
Subjects
free text keywords: Helicon plasma thrusters, HPT, Plasma-wave interaction, Electric space propulsion, Radiofrecuency, Física del plasma, Ondas electromagnéticas, Motores, Biología y Biomedicina
Related Organizations
35 references, page 1 of 3

1. Introduction 1 1.1. Electric propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Helicon Plasma Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3. Objectives and Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Plasma-wave Interaction in Helicon Sources: Literature Review 11 2.1. The early history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2. The dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1. The Trivelpiece-Gould mode . . . . . . . . . . . . . . . . . . . . . 13 2.2.2. Non-uniform plasma density . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3. The lower hybrid frequency range . . . . . . . . . . . . . . . . . . . 16 2.3. The power absorption mechanisms . . . . . . . . . . . . . . . . . . . . . . 17 2.4. Antenna types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5. Simulation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6. Typical experimental devices . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. General Plasma-wave Interaction Model 27 3.1. Maxwell equations and dielectric tensor . . . . . . . . . . . . . . . . . . . 27 3.2. The (0D) dispersion relation for a uniform plasma . . . . . . . . . . . . . 30 3.2.1. The helicon conventional frequency regime . . . . . . . . . . . . . . 32 3.2.2. The helicon extended frequency regime . . . . . . . . . . . . . . . 33 3.3. The axisymmetric 2D model . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4. The radial 1D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5. Power deposition and antenna impedance . . . . . . . . . . . . . . . . . . 40

4. The 1D Plasma-wave Interaction Model 45 4.1. 1D plasma-wave model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.1. Analytical solution for uniform plasma density . . . . . . . . . . . 47 4.1.2. Analytical solution in vacuum . . . . . . . . . . . . . . . . . . . . . 49 4.1.3. Boundary and matching conditions . . . . . . . . . . . . . . . . . . 49 4.2. The Fourier transform of the antenna current . . . . . . . . . . . . . . . . 51 4.2.1. Nagoya III antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.2. Double saddle antenna family . . . . . . . . . . . . . . . . . . . . . 53 4.2.3. Helical antenna family . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3. Nominal simulation case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4. The truncation of the Fourier double series . . . . . . . . . . . . . . . . . 55 4.4.1. Nagoya III antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4.2. Double saddle family . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4.3. Helical antenna family . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4.4. Summary for the modes truncation . . . . . . . . . . . . . . . . . . 62

[14] Michael D West, Christine Charles, and Rod W Boswell. Testing a helicon double layer thruster immersed in a space-simulation chamber. Journal of Propulsion and Power, 24(1):134{141, 2008.

[15] Eduardo Ahedo and Jaume Navarro-Cavalle. Helicon thruster plasma modeling: Two-dimensional uid-dynamics and propulsive performances. Physics of Plasmas (1994-present), 20(4):043512, 2013.

[16] Sabrina Pottinger, Vaios Lappas, Christine Charles, and Rod Boswell. Performance characterization of a helicon double layer thruster using direct thrust measurements. Journal of Physics D: Applied Physics, 44(23):235201, 2011. [OpenAIRE]

[17] Timothy Ziemba, John Carscadden, John Slough, James Prager, and Robert Winglee. High power helicon thruster. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, page 4119, 2005. [OpenAIRE]

[18] Francis F Chen. Helicon discharges and sources: a review. Plasma Sources Science and Technology, 24(1):014001, 2015.

[19] Jaume Navarro, M Merino, and Eduardo Ahedo. A uiddynamic performance model of a helicon thruster. In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, page 3955, 2012.

[20] E Ahedo and M Merino. Two-dimensional supersonic plasma acceleration in a magnetic nozzle. Physics of Plasmas (1994-present), 17(7):073501, 2010.

[21] Eduardo Ahedo. Plasma dynamics in a helicon thruster. In Progress in Propulsion Physics, volume 4, pages 337{354. EDP Sciences, 2013.

[27] Francis F Chen and Rod W Boswell. Helicons-the past decade. Plasma Science, IEEE Transactions on, 25(6):1245{1257, 1997.

[28] RW Boswell. Plasma production using a standing helicon wave. Physics Letters A, 33(7):457{458, 1970.

[29] RW Boswell. Very e cient plasma generation by whistler waves near the lower hybrid frequency. Plasma Physics and Controlled Fusion, 26(10):1147, 1984. [OpenAIRE]

35 references, page 1 of 3
Any information missing or wrong?Report an Issue