A Scale Elasticity Measure for Directional Distance Function and its Dual

Preprint OPEN
Valentin Zelenyuk;
(2011)

In this paper we introduce a scale elasticity measure based on directional distance function for multi-output-multi-input technologies and explore its fundamental properties. Specifically, we derive necessary and sufficient condition for equivalence of the scale elastic... View more
  • References (16)
    16 references, page 1 of 2

    Chambers, R.G., Y. Chung, R., Färe (1996) “Benefit and distance functions,” Journal of Economic Theory 70:2, pp. 407-419.

    Chambers, R.G., Y. Chung, R., Färe (1998) “Profit, directional distance functions, and Nerlovian efficiency,” Journal of Optimization Theory and Applications 98, pp. 351-364.

    Chau, N., R. Färe (2011) “Shadow Pricing Market Access: A Trade Benefit Function Approach” Journal of Economic Theory, forthcoming.

    Chau, N., R. Färe, and S. Grosskopf (2003) “Trade restrictiveness and efficiency,” International Economic Review 44(3), pp. 1079-1095.

    Chung, Y.H., Färe, R., Grosskopf, S. (1997) “Productivity and undesirable outputs: a directional distance function approach.” Journal of Environmental Management 51, pp. 229-240.

    Färe, R., S. Grosskopf, K. Hayes and D. Margaritis (2008) “Estimating Translated Demand Functions,” Journal of Econometrics 147, pp. 266-274.

    Färe, R., S. Grosskopf and C.A.K. Lovell (1986), “Scale Economies and Duality” Zeitschrift für Nationalökonomie 46:2, pp. 175-182.

    Färe, R., S. Grosskopf, D.W. Noh, and W. Weber (2005) "Characterization of a polluting technology: theory and practice," Journal of Econometrics 126, pp. 469-492.

    Luenberger, D.G. (1994) “Optimality and the Theory of Value.” Journal of Economic Theory 63, pp. 147-69.

    Luenberger, D.G. (1995) Microeconomic Theory. McGraw-Hill, Boston.

  • Metrics
Share - Bookmark