Pricing and Timing Strategies for New Product Using Agent-Based Simulation of Behavioural Consumers

Article OPEN
Keeheon Lee; Hoyeop Lee; Chang Ouk Kim;
(2014)
  • Subject: Product Diffusion, Pricing and Time Strategies, Korean Mobile Phone Market, Sensitivity Analysis

In this study, we are interested in the problem of determining the pricing and timing strategies of a new product by developing an agent-based product diffusion simulation. In the proposed simulation model, agents imitate behavioural consumers, who are reference depende... View more
  • References (17)
    17 references, page 1 of 2

    ABDELLAOUI, M., Bleichrodt, H., & Paraschiv, C. (2007). Loss aversion under prospect theory: a parameter-free measurement. Management Science, 53, 1659-1674. [doi:10.1287/mnsc.1070.0711] BARBERIS, N., Huang, M., & Santos, T. (2001). Prospect theory and asset prices.Quarterly Journal of Economics, 116(1), 1-53.

    [doi:10.1162/003355301556310] BASS, F.M. (1969). A new product growth model for consumer durables. Management Science, 15(5), 215-227. [doi:10.1287/mnsc.15.5.215] BEGGS, A., & Graddy, K. (2009). Anchoring effects: evidence from art auctions.American Economic Review, 99(3), 1027-1039.

    [doi:10.1257/aer.99.3.1027] BENTZ, Y., Merunka, D. (2000). Neural Networks and the Multinomial Logit for Brand Choice Modelling: a Hybrid Approach.Journal of Forecasting, 19, 177-200. [doi:10.1002/(SICI)1099-131X(200004)19:3<177::AID-FOR738>3.0.CO;2-6] BLEICHRODT, H., Pinto, J.L., Wakker, P.P. (2001). Making Descriptive Use of Prospect Theory to Improve the Prescriptive Use of Expected Utility. Management Science, 47(11), 1498-1514. [doi:10.1287/mnsc.47.11.1498.10248] BROMILEY, P. (2009) A Prospect theory model of resource allocation. Decision Analysis, 6(3), 124-138. [doi:10.1287/deca.1090.0142] CAMERER, C., & Thaler, R. H. (1995). Anomalies: ultimatums, dictators and manners. The Journal of Economic Perspectives, 9(2), 209-219.

    [doi:10.1257/jep.9.2.209] GEYER, R., & Blass, V.D. (2010). The economics of cell phone reuse and recycling.International Advanced Manufacturing Technology, 47, 515- 525. [doi:10.1287/mksc.1040.0071] GUARDAGNI, P., & J. Little. 1983. A logit model of brand choice calibrated on scanner data.Marketing Science, 2, 203-238.

    [doi:10.1057/jors.2009.170] GUNTHER, M., Stummer, C., Wakolbinger, LM, & Wildpaner, M. (2011). An agent-based simulation approach for the new product diffusion of a novel biomass fuel. Journal of the Operational Research Society, 62, 12-20. [doi:10.1287/mksc.12.4.378] HARDIE, B.G.S., Johnson, E.J., & Fader, P.S.(1993). Modeling loss aversion and reference dependence effects on brand choice. Marketing Science, 12(4), 378-394. [doi:10.1007/s10683-008-9203-7] HARRISON, G.W., & Rutström, E.E. (2009). Expected utility theory and prospect theory: one wedding and a decent funeral. Experimental Economics, 12, 133-158. [doi:10.1287/mnsc.1100.1269] HE, X.D., & Zhou, X.Y. (2011). Portfolio choice under cumulative prospect theory: an analytical treatment, Management Science, 57(2), 315-331.

    [doi:10.1016/0165-0114(95)00305-3] HONG, T-P., & Lee, C-Y. (1996). Induction of fuzzy rules and membership functions from training examples.Fuzzy Sets and Systems, 84, 33-47.

    [doi:10.1016/j.jbusres.2007.02.003] JAGER, W. (2007). The four P's in social simulation, a perspective on how marketing could benefit from the use of social simulation, Journal of Business Research , 60, 868-875. [doi:10.1162/106454603322694807] JANSSEN, M.A., & Jager, W. (2003). Simulating market dynamics interactions between consumer psychology and social networks. Artificial Life, 9, 343-356. [doi:10.2307/1914185] KAHNEMAN, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk,Econometrica, 47(2), 263-292.

    [doi:10.1145/956750.956769] KIM, S., Lee, K., Cho, J. K., & Kim, C. O. (2011). Agent-based diffusion model for an automobile market with fuzzy TOPSIS-based product adoption process. Expert Systems with Applications, 38(6), 7270-7276.

    LEE, K., Kim, S., Kim, C. O., & Park, TH. (2013). An agent-based competitive product diffusion model for the estimation and sensitivity analysis of social network structure and purchase time distribution. Journal of Artificial Societies and Social Simulation, 16(1), 3 http://jasss.soc.surrey.ac.uk/16/1/3.html. [doi:10.1109/ICPPW.2010.70] LI, X., Ortiz, P.J., Browne, J., Franklin, D., Oliver, J.Y., Geyer, R., Zhou, Y., & Chong, F.T. (2010). Smartphone Evolution and Reuse: Establishing a more Sustainable Model. 2010 39th International Conference on Parallel Processing Workshops. [doi:10.2307/1252170] MAHAJAN, V., Muller, E., & Bass, F.M. (1990). New product diffusion models in marketing: a review and directions for research.Journal of Marketing, 54, 1-26.

    MARDIA, K.V., Kent, J.T., & Bibby, J.M. (1979). Multivariate Analysis. Academic Press.

  • Metrics
Share - Bookmark