Stochastic dominance for law invariant preferences: The happy story of elliptical distributions

Subject: Stochastic dominance, Cumulative Prospect Theory, Elliptical distributions, MeanVariance analysis.

jel: jel:D03  jel:G11  jel:D81


References
(38)
[1] N. Barberis and M. Huang (2008): Stocks as lotteries: The implications of probability weighting for security prices. The American Economic Review , 98(5), 20662100.
[2] M. Baucells and F.H. Heukamp (2006): Stochastic Dominance and Cumulative Prospect Theory. Management Science , 52(9), 14091423.
[3] C. Bernard and M. Ghossoub (2010): Static portfolio choice under cumulative prospect theory. Mathematics and nancial economics , 2(4), 277306.
[4] L. Campi and M. Del Vigna (2012): Weak Insider Trading and Behavioral Finance. SIAM Journal on Financial Mathematics , 3(1), 242279.
[6] D. Cass and J. Stiglitz (1970): The Structure of Investor Preferences and Asset Returns, and Separability in Portfolio Allocation. Journal of Economic Theory , 2, 122160.
[7] G. Chamberlain (1983): A Characterization of the Distributions That Imply MeanVariance Utility Functions. Journal of Economic Theory , 29, 185201.
[8] E.G. De Giorgi, T. Hens and H. Levy (2011): CAPM equilibria with prospect theory preferences. Working Paper, available at http://ssrn.com/abstract=420184.
[9] E.G. De Giorgi, T. Hens and H. Levy (2012): Two Paradigms and Nobel Prizes in Economics: a Contradiction or Coexistence? European Financial Management , 18(2), 163182.
[10] E.G. De Giorgi, T. Hens and M.O. Rieger (2010): Financial market equilibria with cumulative prospect theory. Journal of Mathematical Economics , 46, 633651.
[12] E. Diecidue and P.P. Wakker (2001): On the intuition of RankDependent Utility. The Journal of Risk and Uncertainty , 23(3), 281298.

Metrics
No metrics available

 Download from


Cite this publication