publication . Article . 2017

Un nuevo modelo matemático para la cinética de flotación de carbones

JUAN GUERRERO; JUAN GUERRERO; Juan Barraza; Juan Barraza;
Open Access English
  • Published: 24 Nov 2017
  • Publisher: Universidad Nacional de Colombia
Abstract This study describes the development and formulation of a novel mathematical model for coal flotation kinetic. The flotation rate was considered as a function of chemical, operating and petrographic parameters for a global flotation order n. The equation for flotation rate was obtained by dimensional analysis using the Rayleigh method. It shows the dependency of flotation kinetic on operating parameters, such as air velocity and particle size; chemical parameters, such as reagents dosage and solids content; and mineral and maceral composition of coal. The flotation rate equation integrates the kinetic coefficient and the intrinsic characteristics of coa...
Persistent Identifiers
free text keywords: coal flotation, flotation rate, kinetic model., flotación de carbón, tasa de flotación, modelo cinético., General Engineering, Ingeniería y Tecnología, Ingeniería Química, Ingeniería Química (Plantas y Productos), kinetic model, Kinetic energy, Coal, business.industry, business, Maceral, Materials science, Particle size, Thermodynamics, Rate equation, Rayleigh scattering, symbols.namesake, symbols, Transport phenomena, Dimensionless quantity, lcsh:Technology, lcsh:T, lcsh:Mining engineering. Metallurgy, lcsh:TN1-997
34 references, page 1 of 3

[1] Ahmed, N. and Jameson, G.J., Flotation kinetics. Mineral Processing and Extractive Metallurgy, Review 5, pp. 77-99, 1989. DOI: 10.1080/08827508908952645

[2] Saleh, A.M., A study on the performance of second order models and two phase models in iron ore flotation. Physicochemical Problems of Mineral Processing, 44, pp. 215-230, 2010.

[3] Bu, X., Xie, G., Peng, Y., Ge, L. and Ni, C., Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Physicochemical Problems of Mineral Processing, 53, pp. 342-365, 2017.

[4] Yianatos, J., Bergh, L., Vinnett, L., Contreras, F. and Diaz, F., Flotation rate distribution in the collection zone of industrial cells. Minerals Engineering, 23, pp. 1030-1035, 2010. DOI: 10.1016/j.mineng.2010.05.008. [OpenAIRE]

[5] Polat, M. and Chander, S., First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. International Journal of Mineral Processing, 58, pp. 145- 166, 2000. DOI: 10.1016/S0301-7516(99)00069-1

[6] Luo, C., He, Y., Bu, X. and Wang, S., And improved classic flotation kinetic model of narrow size slime. Journal of China University of Mining and Technology, 44, pp. 477-482, 2015.

[7] Vinnett, L., Alvarez-Silva, M., Jaques, A., Hinojosa, F. and Yianatos, J., Batch flotation kinetics: Fractional calculus approach. Minerals Engineering, 77, pp. 167-171, 2015. DOI: 10.1016/j.mineng.2015.03.020

[8] Ni, C., Kie, G., Jin, M., Peng, Y. and Xia, W., The difference in flotation kinetics of various size fraction of bituminous coal between rougher and cleaner flotation processes. Powder Technology, 292, pp. 210-216, 2016. DOI: 10.1016/j.powtec.2016.02.004

[9] Alvarez-Silva, M., Vinnett, L., Langlois, R. and Waters, K.E., A comparison of the predictability of batch flotation kinetic models. Minerals Engineering, 99, pp. 142-150, 2016. DOI: 10.1016/j.mineng.2016.08.019 [OpenAIRE]

[10] Ai, G., Yang, X. and Li, X., Flotation characteristics and flotation kinetics of fine wolframite. Powder Technology, 305, pp. 377-381, 2017. DOI: 10.1016/j.powtec.2016.09.068

[11] Xing, Y., Gui, X., Cao, Y., Wang, Y., Xu, M., Wang, D. and Li, C., Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technology, 305, pp. 166-173, 2017. DOI: 10.1016/j.powtec.2016.10.003

[12] Zhang, N.N., Zhuo, C.C., Pan, J.H., Xia, W., Liu, C., Tang, M.C. and Cao, S.S., The response of diasporic-bauxite flotation to particle size based on flotation kinetic study and neural network simulation. Powder Technology, 318, pp. 272-281, 2017. DOI: 10.1016/j.powtec.2017.06.010

[13] Brozek, M. and Mlynarczykowska, A., Analysis of kinetics models of batch flotation. Physicochemical Problems of Mineral Processing, 41, pp. 51-65, 2007.

[14] Wierink, G., A computational framework for coupled modelling of three-phase systems with soluble surfactants. PhD dissertation, Aalto University, Helsinki, Finland, 2012.

[15] Klassen, V.I. and Mokrousov, V.A., An introduction to the theory of flotation. Butterworths, London, 1963.

34 references, page 1 of 3
Any information missing or wrong?Report an Issue