publication . Article . 2014

Diseño asistido por computadora de la inmovilización covalente de bromelina y papaína

Bessy Cutiño-Avila; Dayrom Gil Pradas; Carlos Aragón Abreu; Yuniel Fernández Marrero; Martha Hernández de la Torre; Emir Salas Sarduy; María de los Ángeles Chávez Planes; José Manuel Guisán Seijas; Joaquín Díaz Brito; Alberto del Monte-Martínez;
Open Access English
  • Published: 01 Jul 2014
  • Publisher: Instituto de Biotecnología, Universidad Nacional de Colombia
  • Country: Argentina
Abstract
Enzymes as immobilized derivatives have been widely used in Food, Agrochemical, Pharmaceutical and Biotechnological industries. Protein immobilization is probably the most used technology to improve the operational stability of these mo-lecules. Bromelain (Ananas comosus)and papain (Carica papaya)are cystein proteases extensively used as immobilized biocatalyst with several applications in therapeutics, racemic mixtures resolution, affinity chromatography and others in-dustrial scenarios. The aim of this work was to optimize the covalent immobilization of bromelain and papain via rational design of immobilized derivatives strategy (RDID) and RDID1.0program. Were...
Subjects
free text keywords: bromelain, covalent immobilization, immobilized derivatives, papain, rational design, bromelina, derivados inmovilizados, diseño racional, inmovilización covalente, papaína, Métodos de Investigación en Bioquímica, Ciencias Biológicas, CIENCIAS NATURALES Y EXACTAS, Carica, biology.organism_classification, biology, Immobilized enzyme, Functional activity, Nuclear chemistry, Ph stability, Chemistry, Covalent bond, Residual activity, Stereochemistry, chemistry.chemical_compound, Ananas, lcsh:Biotechnology, lcsh:TP248.13-248.65
31 references, page 1 of 3

Abbenante, G., Fairlie, D.P. 2005. Protease Inhibitors in the Clinic. Medicinal Chemistry. 1: 71-104. [OpenAIRE]

Anvar, A., Saleemuddin, M. 2002. Purification and characterization of digestive alkaline protease from the larvae of Spilosoma obliqua. Archiv. Insect Biochem. Physiol. 51: 1-12. [OpenAIRE]

Bradford, M.M. 1976. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248-254.

Cutiño-Avila, B., Cunill-Semanat, E., Gil, D.F., Chávez, M.A., Díaz, J., del Monte-Martínez, A. 2013. Synthesis of Tetanus ToxoidSepharose CL 4B derivatives by Rational Design. In: Ruiz Ll., Susana B. V Latin American Congress on Biomedical Engineering CLAIB 2011, IFMBE Proceedings 33. 800. ISBN 978-3-642- 21197-3.

del Monte, A., Nolasco, H., Forrellat, A., Aragón, C., García, A., Díaz, J., Carrillo, O. 2002. Evidencias de la presencia de lipasas en el hepatopáncreas de Litopenaeus schmitii. CIVA 2002 (http:// www.civa2002.org), AquaTIC. 6: 207-222.

del Monte-Martínez, A., Cutiño-Avila, B. 2012. Rational design of immobilized lipases and phospholipases. J. Meth. Mol. Biol. 861(4): 343-82.

Delfín, J., Morera, V., González, Y., Díaz, J., Márquez, M., Larionova, N., Saroyán, A., Padrón, G., Chávez, M. 1996. Purification, characterization and immobilization of proteinase inhibitors from Stichodactyla helianthus. Toxicon. 34: 1367- 1376.

Dunn, B. 1989. Protease mechanism. In: Beynon, R., Bond J. Proteolytic Enzymes. A Practical Approach. Oxford University Press, Oxford. 57-59.

Guisán, J.M. 1988. Aldehyde-agarose gels as activated supports for immobilisation-stabilization of enzymes. Enzyme and Microbrial Technology. 10: 375-382. [OpenAIRE]

Guisán, J.M., Fernández-Lafuente, R., Rodríguez, V., Bastida, A., Blanco, R.M., Alvaro, G. 1993. Enzyme stabilization by multipoint covalent attachment to activated pre-existing supports. In: Van del Tweel W.J.J., Harder A., Buitelaar R.M., editors. Stability Stabilization of Enzymes. Amsterdam: Elsevier Science Publisher B.V. 55-62.

Hage, D.S. 1999. Affinity Chromatography: A review of Clinical Applications. Clinical Chemistry. 45: 593-615.

Hanefeld, U., Gardossi, L., Magner, E. 2009. Understanding enzyme immobilization. Chemical Society Reviews. 38: 453-468. [OpenAIRE]

Hasselbalch, K.A. 1917. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochemische Zeitschrift. 78: 112-144.

Henderson, L.J. 1908. Concerning the relationship between the strength of acids their capacity to preserve neutrality. Am J Physiol. 21(4): 173-179. [OpenAIRE]

Hernández, K., Fernández-Lafuente, R. 2011. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme and Microbial Technology. 48 (2): 107-122. [OpenAIRE]

31 references, page 1 of 3
Abstract
Enzymes as immobilized derivatives have been widely used in Food, Agrochemical, Pharmaceutical and Biotechnological industries. Protein immobilization is probably the most used technology to improve the operational stability of these mo-lecules. Bromelain (Ananas comosus)and papain (Carica papaya)are cystein proteases extensively used as immobilized biocatalyst with several applications in therapeutics, racemic mixtures resolution, affinity chromatography and others in-dustrial scenarios. The aim of this work was to optimize the covalent immobilization of bromelain and papain via rational design of immobilized derivatives strategy (RDID) and RDID1.0program. Were...
Subjects
free text keywords: bromelain, covalent immobilization, immobilized derivatives, papain, rational design, bromelina, derivados inmovilizados, diseño racional, inmovilización covalente, papaína, Métodos de Investigación en Bioquímica, Ciencias Biológicas, CIENCIAS NATURALES Y EXACTAS, Carica, biology.organism_classification, biology, Immobilized enzyme, Functional activity, Nuclear chemistry, Ph stability, Chemistry, Covalent bond, Residual activity, Stereochemistry, chemistry.chemical_compound, Ananas, lcsh:Biotechnology, lcsh:TP248.13-248.65
31 references, page 1 of 3

Abbenante, G., Fairlie, D.P. 2005. Protease Inhibitors in the Clinic. Medicinal Chemistry. 1: 71-104. [OpenAIRE]

Anvar, A., Saleemuddin, M. 2002. Purification and characterization of digestive alkaline protease from the larvae of Spilosoma obliqua. Archiv. Insect Biochem. Physiol. 51: 1-12. [OpenAIRE]

Bradford, M.M. 1976. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248-254.

Cutiño-Avila, B., Cunill-Semanat, E., Gil, D.F., Chávez, M.A., Díaz, J., del Monte-Martínez, A. 2013. Synthesis of Tetanus ToxoidSepharose CL 4B derivatives by Rational Design. In: Ruiz Ll., Susana B. V Latin American Congress on Biomedical Engineering CLAIB 2011, IFMBE Proceedings 33. 800. ISBN 978-3-642- 21197-3.

del Monte, A., Nolasco, H., Forrellat, A., Aragón, C., García, A., Díaz, J., Carrillo, O. 2002. Evidencias de la presencia de lipasas en el hepatopáncreas de Litopenaeus schmitii. CIVA 2002 (http:// www.civa2002.org), AquaTIC. 6: 207-222.

del Monte-Martínez, A., Cutiño-Avila, B. 2012. Rational design of immobilized lipases and phospholipases. J. Meth. Mol. Biol. 861(4): 343-82.

Delfín, J., Morera, V., González, Y., Díaz, J., Márquez, M., Larionova, N., Saroyán, A., Padrón, G., Chávez, M. 1996. Purification, characterization and immobilization of proteinase inhibitors from Stichodactyla helianthus. Toxicon. 34: 1367- 1376.

Dunn, B. 1989. Protease mechanism. In: Beynon, R., Bond J. Proteolytic Enzymes. A Practical Approach. Oxford University Press, Oxford. 57-59.

Guisán, J.M. 1988. Aldehyde-agarose gels as activated supports for immobilisation-stabilization of enzymes. Enzyme and Microbrial Technology. 10: 375-382. [OpenAIRE]

Guisán, J.M., Fernández-Lafuente, R., Rodríguez, V., Bastida, A., Blanco, R.M., Alvaro, G. 1993. Enzyme stabilization by multipoint covalent attachment to activated pre-existing supports. In: Van del Tweel W.J.J., Harder A., Buitelaar R.M., editors. Stability Stabilization of Enzymes. Amsterdam: Elsevier Science Publisher B.V. 55-62.

Hage, D.S. 1999. Affinity Chromatography: A review of Clinical Applications. Clinical Chemistry. 45: 593-615.

Hanefeld, U., Gardossi, L., Magner, E. 2009. Understanding enzyme immobilization. Chemical Society Reviews. 38: 453-468. [OpenAIRE]

Hasselbalch, K.A. 1917. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochemische Zeitschrift. 78: 112-144.

Henderson, L.J. 1908. Concerning the relationship between the strength of acids their capacity to preserve neutrality. Am J Physiol. 21(4): 173-179. [OpenAIRE]

Hernández, K., Fernández-Lafuente, R. 2011. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme and Microbial Technology. 48 (2): 107-122. [OpenAIRE]

31 references, page 1 of 3
Any information missing or wrong?Report an Issue