publication . Article . 2017

Terapias Celulares y Productos de Ingeniería de Tejidos para el Tratamiento de Lesiones Condrales de Rodilla

Adriana Flórez Cabrera; Martha Isabel González Duque; Marta R. Fontanilla;
Open Access Spanish
  • Published: 01 Jul 2017 Journal: Revista Colombiana de Biotecnología (issn: 0123-3475, eissn: 1909-8758, Copyright policy)
  • Publisher: Universidad Nacional de Colombia
Abstract
RESUMEN El cartílago articular es un tejido vulnerable a las lesiones de diferente etiología; siendo uno de los más afectados, el cartílago de la rodilla. Aunque la mayoría de los tratamientos convencionales reducen los síntomas, generalmente conducen a la formación de fibrocartílago; el cual, posee características diferentes a las del cartílago hialino de las articulaciones. Son pocas las aproximaciones terapéuticas que promueven el reemplazo del tejido dañado por cartílago hialino funcional; las más exitosas son las denominadas terapias avanzadas, que aplican células y productos de ingeniería de tejidos con el fin de estimular la regeneración del cartílago. La...
Subjects
free text keywords: biomaterial, cartílago, lesiones de rodilla, ingeniería de tejidos, Biotechnology, TP248.13-248.65, Tissue Scaffolds, Cartilage, Knee Injuries, Tissue Engineering, Ciencias Médicas y de la Salud, Biotecnología en Salud, Tecnologías para la Manipulación de Células, Tejidos, Órganos o el Organismo (Reproducción Asistida), Cell therapy, Medicine, business.industry, business, Hyaline cartilage, medicine.anatomical_structure, Pathology, medicine.medical_specialty, Fibrocartilage, Articular cartilage
112 references, page 1 of 8

Abbas AA, Mohamad JA, Lydia AL, Selvaratnam L, Razif A, Ab-Rahim S,Kavitha G, Shilpa PN, K. T. (2014). Autologous chondrocyte implantation for knee focal cartilage defects: 3 years' follow-up at the university malaya medical centre. Journal of Health and Translational Medicine, Volume 17 (Issue 1).

Aigner, J., Tegeler, J., Hutzler, P., Campoccia, D., Pavesio, A., Hammer, C., … Naumann, A. (1998). Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. Journal of Biomedical Materials Research, 42(2), 172-81.

Aigner, T., & Stöve, J. (2003). Collagens--major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Advanced Drug Delivery Reviews, 55 (12), 1569-93. [OpenAIRE]

Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., … Kaplan, D. L. (2003). Silk-based biomaterials. Biomaterials, 24(3), 401-416. http:// doi.org/10.1016/S0142-9612(02)00353-8.

Anderson, D. E., Williams, R. J., DeBerardino, T. M., Taylor, D. C., Ma, C. B., Kane, M. S., & Crawford, D. C. (2017). Magnetic Resonance Imaging Characterization and Clinical Outcomes After NeoCart Surgical Therapy as a Primary Reparative Treatment for Knee Cartilage Injuries. The American Journal of Sports Medicine, 363546516677255. http://doi.org/10.1177/0363546516677255.

Awad, H. A., Wickham, M. Q., Leddy, H. A., Gimble, J. M., & Guilak, F. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 25 (16), 3211-22. http://doi.org/10.1016/ j.biomaterials.2003.10.045.

Bar-Or, D., Salottolo, K. M., Loose, H., Phillips, M. J., McGrath, B., Wei, N., … Clift, V. (2014). A randomized clinical trial to evaluate two doses of an intra-articular injection of LMWF-5A in adults with pain due to osteoarthritis of the knee. PloS One, 9 ( 2 ) , e 8 7 9 1 0 . h t t p : / / d o i . o r g / 1 0 . 1 3 7 1 / journal.pone.0087910.

Bartlett, W., Krishnan, S. P., Skinner, J. A., Carrington, R. W. J., Briggs, T. W. R., & Bentley, G. (2006). Collagen-covered versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a comparison of tourniquet times. European Journal of Orthopaedic Surgery & Traumatology, 16(4), 315-317. http:// doi.org/10.1007/s00590-006-0096-x.

Behrens, P., Bitter, T., Kurz, B., & Russlies, M. (2006). Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)--5-year follow-up. The Knee, 13(3), 194-202. http:// doi.org/10.1016/j.knee.2006.02.012. [OpenAIRE]

Bhattacharjee, M., Coburn, J., Centola, M., Murab, S., Barbero, A., Kaplan, D. L., … Ghosh, S. (2015). Tissue engineering strategies to study cartilage development, degeneration and regeneration. Advanced Drug Delivery Reviews, 84, 107-22. http://doi.org/10.1016/j.addr.2014.08.010.

Bosnakovski, D., Mizuno, M., Kim, G., Takagi, S., Okumura, M., & Fujinaga, T. (2006). Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnology and Bioengineering, 93(6), 1152-63. http://doi.org/10.1002/ bit.20828.

Briggs, T. W. R., Mahroof, S., David, L. A., Flannelly, J., Pringle, J., & Bayliss, M. (2003). Histological evaluation of chondral defects after autologous chondrocyte implantation of the knee. The Journal of Bone and Joint Surgery. British Volume, 85(7), 1077-83.

Brittberg, M. (2010). Cell Carriers as the Next Generation of Cell Therapy for Cartilage Repair. The American Journal of Sports Medicine, 38(6), 1259-1271. http://doi.org/10.1177/0363546509346395. [OpenAIRE]

Brix, M. O., Stelzeneder, D., Chiari, C., Koller, U., Nehrer, S., Dorotka, R., … Domayer, S. E. (2014). Treatment of Full-Thickness Chondral Defects With Hyalograft C in the Knee: Long-term Results. The American Journal of Sports Medicine, 42(6), 1426- 32. http://doi.org/10.1177/0363546514526695.

Busija, L., Bridgett, L., Williams, S. R. M., Osborne, R. H., Buchbinder, R., March, L., & Fransen, M. (2010). Osteoarthritis. Best Practice & Research. Clinical Rheu matology, 24 , 757 -768. htt p:// doi.org/10.1016/j.berh.2010.11.001.

112 references, page 1 of 8
Any information missing or wrong?Report an Issue