publication . Article . 2009


Open Access English
  • Published: 01 Jun 2009 Journal: Dyna, volume 76, issue 157, pages 153-161 (issn: 0012-7353, Copyright policy)
  • Publisher: Universidad Nacional de Colombia
Se desarrolló un modelo matemático para establecer el efecto que tiene la forma de las ondas de corriente pulsante en el tamaño y dureza de nanocristales electrodepositados. El modelo relaciona de forma directa las variables típicas de las ondas (frecuencia, ciclo de trabajo y corriente pico) con la dureza de los depósitos generados mediante corriente continua y con cuatro tipos de ondas de corriente pulsante: rectangular, rampa ascendente, rampa descendente y triangular. Se evaluaron los resultados del modelo para ciclos de trabajo de 20 y 80%, con frecuencias de 50 y 150 Hz y corrientes pico de 4 y 8 kA/m². El modelo predice que pequeños aumentos en el sobrepo...
free text keywords: Ondas de corriente, electrodepositación, nucleación, crecimiento, Modelo matemático, Pulse current, electroplating, nucleation, growth, Mathematical model, lcsh:Technology, lcsh:T, lcsh:Mining engineering. Metallurgy, lcsh:TN1-997
Related Organizations
18 references, page 1 of 2

[1] SCHARIFKER, B. AND HILLS, G. Theoretical and experimental studies of multiple nucleation, Electrochimica Acta, 28, 7, 879-889, 1983. [OpenAIRE]

[2] MOSTANY, J., SERRUYA, A. AND SCHARIFKER, B. Spatial distribution of electrodeposited lead nuclei on to vitreous carbon beyond their nearest neighbours, J. Electroanalytical Chemistry, 383, 37-41, 1995.

[3] SERRUYA, A., MOSTANY, J. AND SCHARIFKER, B. The kinetics of mercury nucleation from Hg22+ and Hg2+ solutions on vitreous carbon electrodes, J. Electroanalytical Chem., 464, 39-47, 1999.

[4] ALEXANDER, M. AND ZAPRYANOVA, T. Nucleation and growth of copper under combined charge transfer and diffusion limitations: Part I, Electrochimica Acta, 51, 2926-2933, 2006.

[5] MILCHEV, A. AND ZAPRYANOVA, T. Nucleation and growth of copper under combined charge transfer and difusión limitations-Part II, Electrochimica Acta, 51, 4916- 4921, 2006.

[6] YOUSSEF , KH. M. S., KOCH, C. C. AND FEDKIW, P. S. Influence of Additives and Pulse Electrodeposition Parameters on Production of Nanocrystalline Zinc from Zinc Chloride Electrolytes, J. Electrochemical Soc., 151, 2, C103-C111, 2004.

[7] KIM, B., RITZDORF, T. Electrical Waveform Mediated Through-Mask Deposition of Solder Bumps for Wafer Level Packaging, J. Electrochemical Soc., 151, 5, C342-C347, 2004.

[8] IBAÑEZ, A., FATÁS, E. Mechanical and structural properties of electrodeposited copper and their relation with the electrodeposition parameters, Surface & Coatings Techno., 191, 7- 16, 2005.

[9] HANSAL,W. E.G., TURY, B., HALMDIENST, M., VARSÁNYI, M. L. AND KAUTEK, W. Pulse reverse plating of Ni-Co alloys: Deposition kinetics of Watts, sulfamate and chloride electrolytes, Electrochimica Acta., 52, 1145-1151, 2006.

[10] HU, F. AND CHAN, K. C. Electrocodeposition behavior of Ni-SiC composite under different shaped waveforms, Applied Surf. Sci., 233, 163-171, 2004.

[11] HU, F. AND CHAN, K. C. Deposition behaviour and morphology of Ni-SiC electrocomposites under triangular waveform, Applied Surf. Sci., 243, 251-258, 2005.

[12] KIM, H. AND NALINI P. Subramanian, Branko N. Popov, Preparation of PEM fuel cell electrodes using pulse electrodeposition, J. Power Sour., 138, 14-24, 2004.

[13] HANSEN, N. HALL-PETCH relation and boundary strengthening, Scripta Materialia, 51, 801-806, 2004.

[14] WONG, K. P., CHAN, K. C., AND YUE, T. M. A study of hardness and grain size in pulse current electroforming of nickel using different shaped waveforms, J. Appl. Electrochem., 31, 25-34 2001.

[15] WONG, K. P., CHAN K. C. AND YUE, T. M. Modelling the effect of complex waveform on surface finishing in pulse current electroforming of nickel, Surface and Coating Technology, 135, 91-97, 2001.

18 references, page 1 of 2
Any information missing or wrong?Report an Issue